391 research outputs found

    A conceptual information sharing framework to improve supply chain security collaboration

    Get PDF
    Modern Supply Chains are critical in terms of efficiency, economic activities and commercial impact, particularly in case of security incidents. Inland terminals, commercial ports and dry ports constitute key gateways for the transportation flows in these modern supply chains and are require enhanced security procedures. This paper develops a framework that facilitates the sharing of information among various supply chain stakeholders, which is expected to improve the security level from a value chain perspective. In this context, we propose the upgrade of the current security strategies utilizing existing processes, equipment in order to minimise time and cost currently needed but more importantly improving the level of security in the supply chain. A conceptual rule and role-based data fusion framework is developed enabling the seamless and timely exchange of messages. The proposed Data Fusion Framework has a simple architecture that supports quick integration to either network-based, distributed systems or conventional stand-alone systems and adheres to common data fusion principles. The proposed framework considers different components (e.g. sensors, algorithms and fusing procedures) in an equipment agnostic approach so as to enable easy access and easy usage of security information.N/

    A Self-Guided Docking Architecture for Autonomous Surface Vehicles

    Get PDF
    Autonomous Surface Vehicles (ASVs) provide the ideal platform to further explore the many opportunities in the cargo shipping industry, by making it more profitable and safer. Information retrieved from a 3D LIDAR, IMU, GPS, and Camera is combined to extract the geometric features of the floating platform and to estimate the relative position and orientation of the moor to the ASV. Then, a trajectory is planned to a specific target position, guaranteeing that the ASV will not collide with the mooring facility. To ensure that the sensors are within range of operation, a module has been developed to generate a trajectory that will deliver the ASV to a catch zone where it is able to function properly.A High-Level controler is also implemented, resorting to an heuristic to evaluate if the ASV is within this operating range and also its current orientation relative to the docking platform

    Enhanced Transparency: Improving Maritime Cyber Governance

    Get PDF
    Like all sectors, there has been a rise in the integration of technology into everyday operations. This paper will argue that one of the main benefits of this integration is improved transparency of the cyber risk landscape. This transparency acts to enhance the cyber situational awareness of individuals, companies and regulators. This heightened awareness of the cyber risks the maritime sector faces will allow better-informed cyber governance mechanisms to be implemented at all levels of the maritime sector. These mechanisms will include company specific policies that are considerate of operational-specific risks and practices, as well as international level regulatory requirements, which cover high-level risks to the sector more broadly. To do this the paper will firstly explore what situational awareness is and how it is important to decision-making. The paper will then explore the role of technology in enhancing situational awareness. Finally, the paper will discuss how this heightened situational awareness can be utilized to develop cyber governance within the sector

    Biosignal-Based Driving Skill Classification Using Machine Learning: A Case Study of Maritime Navigation

    Get PDF
    This work presents a novel approach to detecting stress differences between experts and novices in Situation Awareness (SA) tasks during maritime navigation using one type of wearable sensor, Empatica E4 Wristband. We propose that for a given workload state, the values of biosignal data collected from wearable sensor vary in experts and novices. We describe methods to conduct a designed SA task experiment, and collected the biosignal data on subjects sailing on a 240° view simulator. The biosignal data were analysed by using a machine learning algorithm, a Convolutional Neural Network. The proposed algorithm showed that the biosingal data associated with the experts can be categorized as different from that of the novices, which is in line with the results of NASA Task Load Index (NASA-TLX) rating scores. This study can contribute to the development of a self-training system in maritime navigation in further studies

    The Maritime Domain Awareness Center– A Human-Centered Design Approach

    Get PDF
    This paper contends that Maritime Domain Awareness Center (MDAC) design should be a holistic approach integrating established knowledge about human factors, decision making, cognitive tasks, complexity science, and human information interaction. The design effort should not be primarily a technology effort that focuses on computer screens, information feeds, display technologies, or user interfaces. The existence of a room with access to vast amounts of information and wall-to-wall video screens of ships, aircraft, weather data, and other regional information does not necessarily correlate to possessing situation awareness. Fundamental principles of human-centered information design should guide MDAC design and technology selection, and it is imperative that they be addressed early in system development. The design approach should address the reason and purpose for a given MDAC. Subsequent design efforts should address ergonomic interaction with information – the relationship of the brain to the information ecosystem provided by the MDAC, and the cognitive science of situation awareness and decision making. This understanding will guide technology functionality. The system user and decision maker should be the focus of the information design specifications, and this user population must participate and influence the information design. Accordingly, this paper provides a “design gestalt” by which to approach the design and development of an MDAC

    Digital Cognitive Companions for Marine Vessels : On the Path Towards Autonomous Ships

    Get PDF
    As for the automotive industry, industry and academia are making extensive efforts to create autonomous ships. The solutions for this are very technology-intense. Many building blocks, often relying on AI technology, need to work together to create a complete system that is safe and reliable to use. Even when the ships are fully unmanned, humans are still foreseen to guide the ships when unknown situations arise. This will be done through teleoperation systems.In this thesis, methods are presented to enhance the capability of two building blocks that are important for autonomous ships; a positioning system, and a system for teleoperation.The positioning system has been constructed to not rely on the Global Positioning System (GPS), as this system can be jammed or spoofed. Instead, it uses Bayesian calculations to compare the bottom depth and magnetic field measurements with known sea charts and magnetic field maps, in order to estimate the position. State-of-the-art techniques for this method typically use high-resolution maps. The problem is that there are hardly any high-resolution terrain maps available in the world. Hence we present a method using standard sea-charts. We compensate for the lower accuracy by using other domains, such as magnetic field intensity and bearings to landmarks. Using data from a field trial, we showed that the fusion method using multiple domains was more robust than using only one domain. In the second building block, we first investigated how 3D and VR approaches could support the remote operation of unmanned ships with a data connection with low throughput, by comparing respective graphical user interfaces (GUI) with a Baseline GUI following the currently applied interfaces in such contexts. Our findings show that both the 3D and VR approaches outperform the traditional approach significantly. We found the 3D GUI and VR GUI users to be better at reacting to potentially dangerous situations than the Baseline GUI users, and they could keep track of the surroundings more accurately. Building from this, we conducted a teleoperation user study using real-world data from a field-trial in the archipelago, where the users should assist the positioning system with bearings to landmarks. The users experienced the tool to give a good overview, and despite the connection with the low throughput, they managed through the GUI to significantly improve the positioning accuracy
    corecore