167 research outputs found

    Improving legibility of natural deduction proofs is not trivial

    Full text link
    In formal proof checking environments such as Mizar it is not merely the validity of mathematical formulas that is evaluated in the process of adoption to the body of accepted formalizations, but also the readability of the proofs that witness validity. As in case of computer programs, such proof scripts may sometimes be more and sometimes be less readable. To better understand the notion of readability of formal proofs, and to assess and improve their readability, we propose in this paper a method of improving proof readability based on Behaghel's First Law of sentence structure. Our method maximizes the number of local references to the directly preceding statement in a proof linearisation. It is shown that our optimization method is NP-complete.Comment: 33 page

    Multiplication-Related Classes of Complex Numbers

    Get PDF
    The use of registrations is useful in shortening Mizar proofs [1], [2], both in terms of formalization time and article space. The proposed system of classes for complex numbers aims to facilitate proofs involving basic arithmetical operations and order checking. It seems likely that the use of self-explanatory adjectives could also improve legibility of these proofs, which would be an important achievement [3]. Additionally, some potentially useful definitions, following those defined for real numbers, are introduced.Department of Carbohydrate Technology, University of Agriculture, Krakow, PolandMarco B. Caminati and Giuseppe Rosolini. Custom automations in Mizar. Journal of Automated Reasoning, 50(2):147–160, 2013.Artur KorniƂowicz. On rewriting rules in Mizar. Journal of Automated Reasoning, 50(2): 203–210, 2013.Karol Pąk. Improving legibility of natural deduction proofs is not trivial. Logical Methods in Computer Science, 10, 2014.28219721

    Methods of Lemma Extraction in Natural Deduction Proofs

    Full text link

    Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq

    Get PDF

    Synthetic Undecidability and Incompleteness of First-Order Axiom Systems in Coq

    Get PDF
    We mechanise the undecidability of various frst-order axiom systems in Coq, employing the synthetic approach to computability underlying the growing Coq Library of Undecidability Proofs. Concretely, we cover both semantic and deductive entailment in fragments of Peano arithmetic (PA) as well as ZF and related fnitary set theories, with their undecidability established by many-one reductions from solvability of Diophantine equations, i.e. Hilbert’s tenth problem (H10), and the Post correspondence problem (PCP), respectively. In the synthetic setting based on the computability of all functions defnable in a constructive foundation, such as Coq’s type theory, it sufces to defne these reductions as metalevel functions with no need for further encoding in a formalised model of computation. The concrete cases of PA and the considered set theories are supplemented by a general synthetic theory of undecidable axiomatisations, focusing on well-known connections to consistency and incompleteness. Specifcally, our reductions rely on the existence of standard models, necessitating additional assumptions in the case of full ZF, and all axiomatic extensions still justifed by such standard models are shown incomplete. As a by-product of the undecidability of set theories formulated using only membership and no equality symbol, we obtain the undecidability of frst-order logic with a single binary relation

    A proof calculus which reduces syntactic bureaucracy

    Get PDF
    International audienceIn usual proof systems, like the sequent calculus, only a very limited way of combining proofs is available through the tree structure. We present in this paper a logic-independent proof calculus, where proofs can be freely composed by connectives, and prove its basic properties. The main advantage of this proof calculus is that it allows to avoid certain types of syntactic bureaucracy inherent to all usual proof systems, in particular the sequent calculus. Proofs in this system closely reflect their atomic flow, which traces the behaviour of atoms through structural rules. The general definition is illustrated by the standard deep-inference system for propositional logic, for which there are known rewriting techniques that achieve cut elimination based only on the information in atomic flows

    Hammering towards QED

    Get PDF
    This paper surveys the emerging methods to automate reasoning over large libraries developed with formal proof assistants. We call these methods hammers. They give the authors of formal proofs a strong “one-stroke” tool for discharging difficult lemmas without the need for careful and detailed manual programming of proof search. The main ingredients underlying this approach are efficient automatic theorem provers that can cope with hundreds of axioms, suitable translations of the proof assistant’s logic to the logic of the automatic provers, heuristic and learning methods that select relevant facts from large libraries, and methods that reconstruct the automatically found proofs inside the proof assistants. We outline the history of these methods, explain the main issues and techniques, and show their strength on several large benchmarks. We also discuss the relation of this technology to the QED Manifesto and consider its implications for QED-like efforts.Blanchette’s Sledgehammer research was supported by the Deutsche Forschungs- gemeinschaft projects Quis Custodiet (grants NI 491/11-1 and NI 491/11-2) and Hardening the Hammer (grant NI 491/14-1). Kaliszyk is supported by the Austrian Science Fund (FWF) grant P26201. Sledgehammer was originally supported by the UK’s Engineering and Physical Sciences Research Council (grant GR/S57198/01). Urban’s work was supported by the Marie-Curie Outgoing International Fellowship project AUTOKNOMATH (grant MOIF-CT-2005-21875) and by the Netherlands Organisation for Scientific Research (NWO) project Knowledge-based Automated Reasoning (grant 612.001.208).This is the final published version. It first appeared at http://jfr.unibo.it/article/view/4593/5730?acceptCookies=1

    Metalevel and reflexive extension in mechanical theorem proving

    Get PDF
    In spite of many years of research into mechanical assistance for mathematics it is still much more difficult to construct a proof on a machine than on paper. Of course this is partly because, unlike a proof on paper, a machine checked proof must be formal in the strictest sense of that word, but it is also because usually the ways of going about building proofs on a machine are limited compared to what a mathematician is used to. This thesis looks at some possible extensions to the range of tools available on a machine that might lend a user more flexibility in proving theorems, complementing whatever is already available.In particular, it examines what is possible in a framework theorem prover. Such a system, if it is configured to prove theorems in a particular logic T, must have a formal description of the proof theory of T written in the framework theory F of the system. So it should be possible to use whatever facilities are available in F not only to prove theorems of T, but also theorems about T that can then be used in their turn to aid the user in building theorems of T.The thesis is divided into three parts. The first describes the theory FS₀, which has been suggested by Feferman as a candidate for a framework theory suitable for doing meta-theory. The second describes some experiments with FS₀, proving meta-theorems. The third describes an experiment in extending the theory PRA, declared in FS₀, with a reflection facility.More precisely, in the second section three theories are formalised: propositional logic, sorted predicate logic, and the lambda calculus (with a deBruijn style binding). For the first two the deduction theorem and the prenex normal form theorem are respectively proven. For the third, a relational definition of beta-reduction is replaced with an explicit function.In the third section, a method is proposed for avoiding the work involved in building a full Godel style proof predicate for a theory. It is suggested that the language be extended with quotation and substitution facilities directly, instead of providing them as definitional extensions. With this, it is possible to exploit an observation of Solovay's that the Lob derivability conditions are sufficient to capture the schematic behaviour of a proof predicate. Combining this with a reflection schema is enough to produce a non-conservative extension of PRA, and this is demonstrated by some experiments
    • 

    corecore