93 research outputs found

    Content-aware approach for improving biomedical image analysis: an interdisciplinary study series

    Get PDF
    Biomedicine is a highly interdisciplinary research area at the interface of sciences, anatomy, physiology, and medicine. In the last decade, biomedical studies have been greatly enhanced by the introduction of new technologies and techniques for automated quantitative imaging, thus considerably advancing the possibility to investigate biological phenomena through image analysis. However, the effectiveness of this interdisciplinary approach is bounded by the limited knowledge that a biologist and a computer scientist, by professional training, have of each other’s fields. The possible solution to make up for both these lacks lies in training biologists to make them interdisciplinary researchers able to develop dedicated image processing and analysis tools by exploiting a content-aware approach. The aim of this Thesis is to show the effectiveness of a content-aware approach to automated quantitative imaging, by its application to different biomedical studies, with the secondary desirable purpose of motivating researchers to invest in interdisciplinarity. Such content-aware approach has been applied firstly to the phenomization of tumour cell response to stress by confocal fluorescent imaging, and secondly, to the texture analysis of trabecular bone microarchitecture in micro-CT scans. Third, this approach served the characterization of new 3-D multicellular spheroids of human stem cells, and the investigation of the role of the Nogo-A protein in tooth innervation. Finally, the content-aware approach also prompted to the development of two novel methods for local image analysis and colocalization quantification. In conclusion, the content-aware approach has proved its benefit through building new approaches that have improved the quality of image analysis, strengthening the statistical significance to allow unveiling biological phenomena. Hopefully, this Thesis will contribute to inspire researchers to striving hard for pursuing interdisciplinarity

    Physiology, Biochemistry, and Pharmacology of Transporters for Organic Cations

    Get PDF
    Membrane transporters are of vital importance for cells. They mediate the flux of many substances through the plasma membrane. In this book, the transporters for organic cations, a special class of membrane transporters, are presented. Transporters belonging to this class are important because they allow many neurotransmitters (e.g., histamine and serotonin) and many drugs (e.g., trospium and tofacitinib) to permeate the plasma membrane. Therefore, transporters for organic cations can modulate the action of neurotransmitters and drugs, having in this way important physiological and pharmacological implications. These aspects are illustrated in original works and reviews presented in this book. Using a system biology approach, the global significance of different transporters working together has been illustrated. Regulation mechanisms determining their expression in specific organs and modulating their function are also described in this book, also concerning their role for special drug toxicities. Such an aspect is also discussed in relationship to mutations (single nucleotide polymorphisms) of transporters for organic cations. Finally, the translational value of studies performed in flies, mice, and rats is discussed. Therefore, this book offers integrative information on transporters for organic cations, which may be of interest to beginners and specialized scientists in this field

    Impaired Mitochondrial Bioenergetics under Pathological Conditions

    Get PDF
    Mitochondria are the powerhouses of cells; however, mitochondrial dysfunction causes energy depletion and cell death in a variety of diseases. Altered oxidative phosphorylation and ion homeostasis are associated with ROS production resulting from the disassembly of respiratory supercomplexes and the disruption of electron transfer chains. In pathological conditions, the dysregulation of mitochondrial homeostasis promotes Ca2+ overload in the matrix and ROS accumulation, which induces the mitochondrial permeability transition pore formation responsible for mitochondrial morphological changes linked to membrane dynamics, and ultimately, cell death. Finally, studies on the impaired mitochondrial bioenergetics in pathology could provide molecular tools to counteract diseases associated with mitochondrial dysfunction

    ABC Transporters in Human Diseases

    Get PDF
    Mammalian ATP-binding cassette (ABC) transporters constitute a superfamily of proteins involved in many essential cellular processes. Most of these transporters are transmembrane proteins and allow the active transport of solutes, small molecules, and lipids across biological membranes. On the one hand, some of these transporters are involved in drug resistance (also referred to as MDR or multidrug resistance), a process known to be a major brake in most anticancer treatments, and the medical challenge is thus to specifically inhibit their function. On the other hand, molecular defects in some of these ABC transporters are correlated with several rare human diseases, the most well-documented of which being cystic fibrosis, which is caused by genetic variations in ABCC7/CFTR (cystic fibrosis transmembrane conductance regulator). In the latter case, the goal is to rescue the function of the deficient transporters using various means, such as targeted pharmacotherapies and cell or gene therapy. The aim of this Special Issue, “ABC Transporters in Human Diseases”, is to present, through original articles and reviews, the state-of-the-art of our current knowledge about the role of ABC transporters in human diseases and the proposed therapeutic options based on studies ranging from cell and animal models to patients

    Drug development progress in duchenne muscular dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is a severe, progressive, and incurable X-linked disorder caused by mutations in the dystrophin gene. Patients with DMD have an absence of functional dystrophin protein, which results in chronic damage of muscle fibers during contraction, thus leading to deterioration of muscle quality and loss of muscle mass over time. Although there is currently no cure for DMD, improvements in treatment care and management could delay disease progression and improve quality of life, thereby prolonging life expectancy for these patients. Furthermore, active research efforts are ongoing to develop therapeutic strategies that target dystrophin deficiency, such as gene replacement therapies, exon skipping, and readthrough therapy, as well as strategies that target secondary pathology of DMD, such as novel anti-inflammatory compounds, myostatin inhibitors, and cardioprotective compounds. Furthermore, longitudinal modeling approaches have been used to characterize the progression of MRI and functional endpoints for predictive purposes to inform Go/No Go decisions in drug development. This review showcases approved drugs or drug candidates along their development paths and also provides information on primary endpoints and enrollment size of Ph2/3 and Ph3 trials in the DMD space

    Atherosclerosis: Methods and Protocols

    Get PDF
    This volume provides detailed, up-to-date methods used in research on Atherosclerosis. Chapters guide readers through an overview of the pathogenesis of atherosclerosis and model systems together with in vitro, ex vivo, in vivo and emerging methods in atherosclerosis research. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Atherosclerosis: Methods and Protocols serves as an invaluable resource for those engaging in research on atherosclerosis and cardiovascular disease, as well as for researchers who are new to t
    • …
    corecore