93 research outputs found

    Three-dimensional image technology in forensic anthropology: assessing the validity of biological profiles derived from CT-3D images of the skeleton

    Full text link
    This project explores the reliability of building a biological profile for an unknown individual based on three-dimensional (3D) images of the individual's skeleton. 3D imaging technology has been widely researched for medical and engineering applications, and it is increasingly being used as a tool for anthropological inquiry. While the question of whether a biological profile can be derived from 3D images of a skeleton with the same accuracy as achieved when using dry bones has been explored, bigger sample sizes, a standardized scanning protocol and more interobserver error data are needed before 3D methods can become widely and confidently used in forensic anthropology. 3D images of Computed Tomography (CT) scans were obtained from 130 innominate bones from Boston University's skeletal collection (School of Medicine). For each bone, both 3D images and original bones were assessed using the Phenice and Suchey-Brooks methods. Statistical analysis was used to determine the agreement between 3D image assessment versus traditional assessment. A pool of six individuals with varying experience in the field of forensic anthropology scored a subsample (n = 20) to explore interobserver error. While a high agreement was found for age and sex estimation for specimens scored by the author, the interobserver study shows that observers found it difficult to apply standard methods to 3D images. Higher levels of experience did not result in higher agreement between observers, as would be expected. Thus, a need for training in 3D visualization before applying anthropological methods to 3D bones is suggested. Future research should explore interobserver error using a larger sample size in order to test the hypothesis that training in 3D visualization will result in a higher agreement between scores. The need for the development of a standard scanning protocol focusing on the optimization of 3D image resolution is highlighted. Applications for this research include the possibility of digitizing skeletal collections in order to expand their use and for deriving skeletal collections from living populations and creating population-specific standards. Further research for the development of a standard scanning and processing protocol is needed before 3D methods in forensic anthropology are considered as reliable tools for generating biological profiles

    An investigation into 3D printing of osteological remains: the metrology and ethics of virtual anthropology

    Get PDF
    Three-dimensional (3D) printed human remains are being utilised in courtroom demonstrations of evidence within the UK criminal justice system. This presents a potential issue given that the use of 3D replicas has not yet been empirically tested or validated for use in crime reconstructions. Further, recent movements to critically evaluate the ethics surrounding the presentation of human remains have failed to address the use of 3D printed replica bones. As such, this research addresses the knowledge gap surrounding the accuracy of 3D printed replicas of skeletal elements and investigates how the public feels about the use of 3D printed replicas. Three experimental studies focussed on metrology and identified 3D printed replicas to be accurate to within ± 2.0 mm using computed tomography (CT) scanning, and to within ± 0.2 mm or to 0-5% difference using micro-CT. The potential loss of micromorphological details was also examined and identified that quality control steps were key in identifying and mitigating loss of detail. A fourth experimental study collected data on the opinion of the public of the use of 3D printed human remains in courtroom demonstrations. Respondents were broadly positive and considered that prints can be produced ethically by maintaining the dignity and respect of the decedent. A framework that helps to assess ethical practices was developed as well as an adaptable pathway that can assist with assessing the quality and accuracy of 3D prints. The findings from this research contribute to an empirical evidence base that can underpin future 3D printed crime reconstructions and provides guidance for creating accurate 3D prints that can inform future practice and research endeavours

    Recent Advances in Forensic Anthropological Methods and Research

    Get PDF
    Forensic anthropology, while still relatively in its infancy compared to other forensic science disciplines, adopts a wide array of methods from many disciplines for human skeletal identification in medico-legal and humanitarian contexts. The human skeleton is a dynamic tissue that can withstand the ravages of time given the right environment and may be the only remaining evidence left in a forensic case whether a week or decades old. Improved understanding of the intrinsic and extrinsic factors that modulate skeletal tissues allows researchers and practitioners to improve the accuracy and precision of identification methods ranging from establishing a biological profile such as estimating age-at-death, and population affinity, estimating time-since-death, using isotopes for geolocation of unidentified decedents, radiology for personal identification, histology to assess a live birth, to assessing traumatic injuries and so much more
    • …
    corecore