1,001 research outputs found

    CARAVAN: A Context-AwaRe Architecture for VANET

    Get PDF

    Virtual Access Points for Vehicular Networks

    Get PDF
    ABSTRACT This paper introduces the concept of Virtual Access Points (VAPs) for wireless Vehicular Ad-hoc Networks (VANETS). This new technique allows data dissemination among vehicles, thus extending the reach of roadside access points to uncovered road areas. Each vehicle that receives a message from an Access Point (AP) stores this message and rebroadcasts it into non covered areas. This extends the network coverage for non time critical messages. The VAP role is transparent to the connected nodes, and designed to avoid interference since each operates on a bounded region outside any AP. The experiments show the presented mechanism of store and forward at specific positions present a gain, in term of all the evaluated parameters

    Fog Connectivity Clustering and MDP Modeling for Software-defined Vehicular Networks

    Get PDF
    Intelligent and networked vehicles cooperate to create a mobile Cloud through vehicular Fog computing (VFC). Such clouds rely heavily on the underlying vehicular networks, so estimating communication resilience allows to address the problems caused by intermittent vehicle connectivity for data transfers. Individually estimating the communication stability of vehicles, nevertheless, undergoes incorrect predictions due to their particular mobility patterns. Therefore, we provide a region-oriented fog management model based on the connectivity through vehicular heterogeneous network environment via V2X and C-V2X. A fog management strategy dynamically monitors nearby vehicles to determine distinct regions in urban centres. The model enables a software-defined vehicular network (\Gls{SDVN}) controller to coordinate data flows. The vehicular connectivity described by our model assesses the potential for vehicle communication and conducts dynamic vehicle clustering. From the stochasticity of the environment, our model is based on Markov Decision Process (MDP), tracking the status of vehicle clusters and their potential for provisioning services. The model for vehicular clustering is supported by 5G and DSRC heterogeneous networks. Simulated analyses have shown the capability of our proposed model to estimate cluster reliability in real-time urban scenarios and support effective vehicular fog management
    • …
    corecore