10 research outputs found

    Automated design of local search algorithms for vehicle routing problems with time windows

    Get PDF
    Designing effective search algorithms for solving combinatorial optimisation problems presents a challenge for researchers due to the time-consuming experiments and experience required in decision-making. Automated algorithm design removes the heavy reliance on human experts and allows the exploration of new algorithm designs. This thesis systematically investigates machine learning for the automated design of new and generic local search algorithms, taking the vehicle routing problem with time windows as the testbed. The research starts by building AutoGCOP, a new general framework for the automated design of local search algorithms to optimise the composition of basic algorithmic components. Within the consistent AutoGCOP framework, the basic algorithmic components show satisfying performance for solving the VRPTW. Based on AutoGCOP, the thesis investigates the use of machine learning for automated algorithm composition by modelling the algorithm design task as different machine learning tasks, thus investigating different perspectives of learning in automated algorithm design. Based on AutoGCOP, the thesis first investigates online learning in automated algorithm design. Two learning models based on reinforcement learning and Markov chain are investigated to learn and enhance the compositions of algorithmic components towards automated algorithm design. The Markov chain model presents a superior performance in learning the compositions of algorithmic components during the search, demonstrating its effectiveness in designing new algorithms automatically. The thesis then investigates offline learning to learn the hidden knowledge of effective algorithmic compositions within AutoGCOP for automated algorithm design. The forecast of algorithmic components in the automated composition is defined as a sequence classification task. This new machine learning task is then solved by a Long Short-term Memory (LSTM) neural network which outperforms various conventional classifiers. Further analysis reveals that a Transformer network surpasses LSTM at learning from longer algorithmic compositions. The systematical analysis of algorithmic compositions reveals some key features for improving the prediction. To discover valuable knowledge in algorithm designs, the thesis applies sequential rule mining to effective algorithmic compositions collected based on AutoGCOP. Sequential rules of composing basic components are extracted and further analysed, presenting a superior performance of automatically composed local search algorithms for solving VRPTW. The extracted sequential rules also suggest the importance of considering the impact of algorithmic components on optimisation performance during automated composition, which provides new insights into algorithm design. The thesis gains valuable insights from various learning perspectives, enhancing the understanding towards automated algorithm design. Some directions for future work are present

    A tandem evolutionary algorithm for identifying causal rules from complex data

    Get PDF
    We propose a new evolutionary approach for discovering causal rules in complex classification problems from batch data. Key aspects include (a) the use of a hypergeometric probability mass function as a principled statistic for assessing fitness that quantifies the probability that the observed association between a given clause and target class is due to chance, taking into account the size of the dataset, the amount of missing data, and the distribution of outcome categories, (b) tandem age-layered evolutionary algorithms for evolving parsimonious archives of conjunctive clauses, and disjunctions of these conjunctions, each of which have probabilistically significant associations with outcome classes, and (c) separate archive bins for clauses of different orders, with dynamically adjusted order-specific thresholds. The method is validated on majority-on and multiplexer benchmark problems exhibiting various combinations of heterogeneity, epistasis, overlap, noise in class associations, missing data, extraneous features, and imbalanced classes. We also validate on a more realistic synthetic genome dataset with heterogeneity, epistasis, extraneous features, and noise. In all synthetic epistatic benchmarks, we consistently recover the true causal rule sets used to generate the data. Finally, we discuss an application to a complex real-world survey dataset designed to inform possible ecohealth interventions for Chagas disease

    A New Evolutionary Algorithm For Mining Noisy, Epistatic, Geospatial Survey Data Associated With Chagas Disease

    Get PDF
    The scientific community is just beginning to understand some of the profound affects that feature interactions and heterogeneity have on natural systems. Despite the belief that these nonlinear and heterogeneous interactions exist across numerous real-world systems (e.g., from the development of personalized drug therapies to market predictions of consumer behaviors), the tools for analysis have not kept pace. This research was motivated by the desire to mine data from large socioeconomic surveys aimed at identifying the drivers of household infestation by a Triatomine insect that transmits the life-threatening Chagas disease. To decrease the risk of transmission, our colleagues at the laboratory of applied entomology and parasitology have implemented mitigation strategies (known as Ecohealth interventions); however, limited resources necessitate the search for better risk models. Mining these complex Chagas survey data for potential predictive features is challenging due to imbalanced class outcomes, missing data, heterogeneity, and the non-independence of some features. We develop an evolutionary algorithm (EA) to identify feature interactions in Big Datasets with desired categorical outcomes (e.g., disease or infestation). The method is non-parametric and uses the hypergeometric PMF as a fitness function to tackle challenges associated with using p-values in Big Data (e.g., p-values decrease inversely with the size of the dataset). To demonstrate the EA effectiveness, we first test the algorithm on three benchmark datasets. These include two classic Boolean classifier problems: (1) the majority-on problem and (2) the multiplexer problem, as well as (3) a simulated single nucleotide polymorphism (SNP) disease dataset. Next, we apply the EA to real-world Chagas Disease survey data and successfully archived numerous high-order feature interactions associated with infestation that would not have been discovered using traditional statistics. These feature interactions are also explored using network analysis. The spatial autocorrelation of the genetic data (SNPs of Triatoma dimidiata) was captured using geostatistics. Specifically, a modified semivariogram analysis was performed to characterize the SNP data and help elucidate the movement of the vector within two villages. For both villages, the SNP information showed strong spatial autocorrelation albeit with different geostatistical characteristics (sills, ranges, and nuggets). These metrics were leveraged to create risk maps that suggest the more forested village had a sylvatic source of infestation, while the other village had a domestic/peridomestic source. This initial exploration into using Big Data to analyze disease risk shows that novel and modified existing statistical tools can improve the assessment of risk on a fine-scale

    Human inspired robotic path planning and heterogeneous robotic mapping

    No full text
    One of the biggest challenges facing robotics is the ability for a robot to autonomously navigate real-world unknown environments and is considered by many to be a key prerequisite of truly autonomous robots. Autonomous navigation is a complex problem that requires a robot to solve the three problems of navigation: localisation, goal recognition, and path-planning. Conventional approaches to these problems rely on computational techniques that are inherently rigid and brittle. That is, the underlying models cannot adapt to novel input, nor can they account for all potential external conditions, which could result in erroneous or misleading decision making. In contrast, humans are capable of learning from their prior experiences and adapting to novel situations. Humans are also capable of sharing their experiences and knowledge with other humans to bootstrap their learning. This is widely thought to underlie the success of humanity by allowing high-fidelity transmission of information and skills between individuals, facilitating cumulative knowledge gain. Furthermore, human cognition is influenced by internal emotion states. Historically considered to be a detriment to a person's cognitive process, recent research is regarding emotions as a beneficial mechanism in the decision making process by facilitating the communication of simple, but high-impact information. Human created control approaches are inherently rigid and cannot account for the complexity of behaviours required for autonomous navigation. The proposed thesis is that cognitive inspired mechanisms can address limitations in current robotic navigation techniques by allowing robots to autonomously learn beneficial behaviours from interacting with its environment. The first objective is to enable the sharing of navigation information between heterogeneous robotic platforms. The second objective is to add flexibility to rigid path-planning approaches by utilising emotions as low-level but high-impact behavioural responses. Inspired by cognitive sciences, a novel cognitive mapping approach is presented that functions in conjunction with current localisation techniques. The cognitive mapping stage utilises an Anticipatory Classifier System (ACS) to learn the novel Cognitive Action Map (CAM) of decision points, areas in which a robot must determine its next action (direction of travel). These physical actions provide a shared means of understanding the environment to allow for communicating learned navigation information. The presented cognitive mapping approach has been trained and evaluated on real-world robotic platforms. The results show the successful sharing of navigation information between two heterogeneous robotic platforms with different sensing capabilities. The results have also demonstrated the novel contribution of autonomously sharing navigation information between a range-based (GMapping) and vision-based (RatSLAM) localisation approach for the first time. The advantage of sharing information between localisation techniques allows an individual robotic platform to utilise the best fit localisation approach for its sensors while still being able to provide useful navigation information for robots with different sensor types. Inspired by theories on natural emotions, this work presents a novel emotion model designed to improve a robot's navigation performance through learning to adapt a rigid path-planning approach. The model is based on the concept of a bow-tie structure, linking emotional reinforcers and behavioural modifiers through intermediary emotion states. An important function of the emotions in the model is to provide a compact set of high-impact behaviour adaptations, reducing an otherwise tangled web of stimulus-response patterns. Crucially, the system learns these emotional responses with no human pre-specifying the behaviour of the robot, hence avoiding human bias. The results of training the emotion model demonstrate that it is capable of learning up to three emotion states for robotic navigation without human bias: fear, apprehension, and happiness. The fear and apprehension responses slow the robot's speed and drive the robot away from obstacles when the robot experiences pain, or is uncertain of its current position. The happiness response increases the speed of the robot and reduces the safety margins around obstacles when pain is absent, allowing the robot to drive closer to obstacles. These learned emotion responses have improved the navigation performance of the robot by reducing collisions and navigation times, in both simulated and real-world experiments. The two emotion model (fear and happiness) improved performance the most, indicating that a robot may only require two emotion states (fear and happiness) for navigation in common, static domains

    Improving genetic search in XCS-based classifier systems through understanding the evolvability of classifier rules

    No full text
    Learning classifier systems (LCSs), an established evolutionary computation technique, are over 30 years old with much empirical testing and foundations of theoretical understanding. XCS is a well-tested LCS model that generates optimal (i.e., maximally general and accurate) classifier rules in the final solution. Previous work has hypothesized the evolution mechanisms in XCS by identifying the bounds of learning and population requirements. However, no work has shown exactly how an optimum rule is evolved or especially identifies whether the methods within an LCS are being utilized effectively. In this paper, we introduce a method to trace the evolution of classifier rules generated in an XCS-based classifier system. Specifically, we introduce the concept of a family tree, termed parent-tree, for each individual classifier rule generated in the system during training, which describes the whole generational process for that classifier. Experiments are conducted on two sample Boolean problem domains, i.e., multiplexer and count ones problems using two XCS-based systems, i.e., standard XCS and XCS with code-fragment actions. The analysis of parent-trees reveals, for the first time in XCS, that no matter how specific or general the initial classifiers are, all the optimal classifiers are converged through the mechanism ‘be specific then generalize’ near the final stages of evolution. Populations where the initial classifiers were slightly more specific than the known ‘ideal’ specificity in the target solutions evolve faster than either very specific, ideal or more general starting classifier populations. Consequently introducing the ‘flip mutation’ method and reverting the conventional wisdom back to apply rule discovery in the match set has demonstrated benefits in binary classification problems, which has implications in using XCS for knowledge discovery tasks. It is further concluded that XCS does not directly utilize all relevant information or all breeding strategies to evolve the optimum solution, indicating areas for performance and efficiency improvement in XCS-based systems.</p

    Improving the Scalability of XCS-Based Learning Classifier Systems

    No full text
    Using evolutionary intelligence and machine learning techniques, a broad range of intelligent machines have been designed to perform different tasks. An intelligent machine learns by perceiving its environmental status and taking an action that maximizes its chances of success. Human beings have the ability to apply knowledge learned from a smaller problem to more complex, large-scale problems of the same or a related domain, but currently the vast majority of evolutionary machine learning techniques lack this ability. This lack of ability to apply the already learned knowledge of a domain results in consuming more than the necessary resources and time to solve complex, large-scale problems of the domain. As the problem increases in size, it becomes difficult and even sometimes impractical (if not impossible) to solve due to the needed resources and time. Therefore, in order to scale in a problem domain, a systemis needed that has the ability to reuse the learned knowledge of the domain and/or encapsulate the underlying patterns in the domain. To extract and reuse building blocks of knowledge or to encapsulate the underlying patterns in a problem domain, a rich encoding is needed, but the search space could then expand undesirably and cause bloat, e.g. as in some forms of genetic programming (GP). Learning classifier systems (LCSs) are a well-structured evolutionary computation based learning technique that have pressures to implicitly avoid bloat, such as fitness sharing through niche based reproduction. The proposed thesis is that an LCS can scale to complex problems in a domain by reusing the learnt knowledge from simpler problems of the domain and/or encapsulating the underlying patterns in the domain. Wilson’s XCS is used to implement and test the proposed systems, which is a well-tested, online learning and accuracy based LCS model. To extract the reusable building blocks of knowledge, GP-tree like, code-fragments are introduced, which are more than simply another representation (e.g. ternary or real-valued alphabets). This thesis is extended to capture the underlying patterns in a problemusing a cyclic representation. Hard problems are experimented to test the newly developed scalable systems and compare them with benchmark techniques. Specifically, this work develops four systems to improve the scalability of XCS-based classifier systems. (1) Building blocks of knowledge are extracted fromsmaller problems of a Boolean domain and reused in learning more complex, large-scale problems in the domain, for the first time. By utilizing the learnt knowledge from small-scale problems, the developed XCSCFC (i.e. XCS with Code-Fragment Conditions) system readily solves problems of a scale that existing LCS and GP approaches cannot, e.g. the 135-bitMUX problem. (2) The introduction of the code fragments in classifier actions in XCSCFA (i.e. XCS with Code-Fragment Actions) enables the rich representation of GP, which when couples with the divide and conquer approach of LCS, to successfully solve various complex, overlapping and niche imbalance Boolean problems that are difficult to solve using numeric action based XCS. (3) The underlying patterns in a problem domain are encapsulated in classifier rules encoded by a cyclic representation. The developed XCSSMA system produces general solutions of any scale n for a number of important Boolean problems, for the first time in the field of LCS, e.g. parity problems. (4) Optimal solutions for various real-valued problems are evolved by extending the existing real-valued XCSR system with code-fragment actions to XCSRCFA. Exploiting the combined power of GP and LCS techniques, XCSRCFA successfully learns various continuous action and function approximation problems that are difficult to learn using the base techniques. This research work has shown that LCSs can scale to complex, largescale problems through reusing learnt knowledge. The messy nature, disassociation of message to condition order, masking, feature construction, and reuse of extracted knowledge add additional abilities to the XCS family of LCSs. The ability to use rich encoding in antecedent GP-like codefragments or consequent cyclic representation leads to the evolution of accurate, maximally general and compact solutions in learning various complex Boolean as well as real-valued problems. Effectively exploiting the combined power of GP and LCS techniques, various continuous action and function approximation problems are solved in a simple and straight forward manner. The analysis of the evolved rules reveals, for the first time in XCS, that no matter how specific or general the initial classifiers are, all the optimal classifiers are converged through the mechanism ‘be specific then generalize’ near the final stages of evolution. Also that standard XCS does not use all available information or all available genetic operators to evolve optimal rules, whereas the developed code-fragment action based systems effectively use figure and ground information during the training process. Thiswork has created a platformto explore the reuse of learnt functionality, not just terminal knowledge as present, which is needed to replicate human capabilities

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    Self-Organized Specialization and Controlled Emergence in Organic Computing Systems

    Get PDF
    In this chapter we studied a first approach to generate suitable rule sets for solving classification problems on systems of autonomous, memory constrained components. It was shown that a multi agent system that uses interacting Pittsburgh-style classifier systems can evolve appropiate rule sets. The system evolves specialists for parts of the classification problem and cooperation between them. In this way the components overcome their restricted memory size and are able to solve the entire problem. It was shown that the communication topology between the components strongly influences the average number of components that a request has to pass until it is classified. It was also shown that the introduction of communication costs into the fitness function leads to a more even distribution of knowledge between the components and reduces the communication overhead without influencing the classification performance very much. If the system is used to generate rule sets to solve classification tasks on real hardware systems, communication cost in the training phase can thus lead to a better knowledge distribution and small communication cost. That is, in this way the system will be more robust against the loss of single components and longer reliable in case of limited energy resources

    Utilising restricted for-loops in genetic programming

    Get PDF
    Genetic programming is an approach that utilises the power of evolution to allow computers to evolve programs. While loops are natural components of most programming languages and appear in every reasonably-sized application, they are rarely used in genetic programming. The work is to investigate a number of restricted looping constructs to determine whether any significant benefits can be obtained in genetic programming. Possible benefits include: Solving problems which cannot be solved without loops, evolving smaller sized solutions which can be more easily understood by human programmers and solving existing problems quicker by using fewer evaluations. In this thesis, a number of explicit restricted loop formats were formulated and tested on the Santa Fe ant problem, a modified ant problem, a sorting problem, a visit-every-square problem and a difficult object classificat ion problem. The experimental results showed that these explicit loops can be successfully used in genetic programming. The evolutionary process can decide when, where and how to use them. Runs with these loops tended to generate smaller sized solutions in fewer evaluations. Solutions with loops were found to some problems that could not be solved without loops. The results and analysis of this thesis have established that there are significant benefits in using loops in genetic programming. Restricted loops can avoid the difficulties of evolving consistent programs and the infinite iterations problem. Researchers and other users of genetic programming should not be afraid of loops

    Automated design of local search algorithms for vehicle routing problems with time windows

    Get PDF
    Designing effective search algorithms for solving combinatorial optimisation problems presents a challenge for researchers due to the time-consuming experiments and experience required in decision-making. Automated algorithm design removes the heavy reliance on human experts and allows the exploration of new algorithm designs. This thesis systematically investigates machine learning for the automated design of new and generic local search algorithms, taking the vehicle routing problem with time windows as the testbed. The research starts by building AutoGCOP, a new general framework for the automated design of local search algorithms to optimise the composition of basic algorithmic components. Within the consistent AutoGCOP framework, the basic algorithmic components show satisfying performance for solving the VRPTW. Based on AutoGCOP, the thesis investigates the use of machine learning for automated algorithm composition by modelling the algorithm design task as different machine learning tasks, thus investigating different perspectives of learning in automated algorithm design. Based on AutoGCOP, the thesis first investigates online learning in automated algorithm design. Two learning models based on reinforcement learning and Markov chain are investigated to learn and enhance the compositions of algorithmic components towards automated algorithm design. The Markov chain model presents a superior performance in learning the compositions of algorithmic components during the search, demonstrating its effectiveness in designing new algorithms automatically. The thesis then investigates offline learning to learn the hidden knowledge of effective algorithmic compositions within AutoGCOP for automated algorithm design. The forecast of algorithmic components in the automated composition is defined as a sequence classification task. This new machine learning task is then solved by a Long Short-term Memory (LSTM) neural network which outperforms various conventional classifiers. Further analysis reveals that a Transformer network surpasses LSTM at learning from longer algorithmic compositions. The systematical analysis of algorithmic compositions reveals some key features for improving the prediction. To discover valuable knowledge in algorithm designs, the thesis applies sequential rule mining to effective algorithmic compositions collected based on AutoGCOP. Sequential rules of composing basic components are extracted and further analysed, presenting a superior performance of automatically composed local search algorithms for solving VRPTW. The extracted sequential rules also suggest the importance of considering the impact of algorithmic components on optimisation performance during automated composition, which provides new insights into algorithm design. The thesis gains valuable insights from various learning perspectives, enhancing the understanding towards automated algorithm design. Some directions for future work are present
    corecore