45 research outputs found

    Improving generalisation of AutoML systems with dynamic fitness evaluations

    Full text link
    A common problem machine learning developers are faced with is overfitting, that is, fitting a pipeline too closely to the training data that the performance degrades for unseen data. Automated machine learning aims to free (or at least ease) the developer from the burden of pipeline creation, but this overfitting problem can persist. In fact, this can become more of a problem as we look to iteratively optimise the performance of an internal cross-validation (most often \textit{k}-fold). While this internal cross-validation hopes to reduce this overfitting, we show we can still risk overfitting to the particular folds used. In this work, we aim to remedy this problem by introducing dynamic fitness evaluations which approximate repeated \textit{k}-fold cross-validation, at little extra cost over single \textit{k}-fold, and far lower cost than typical repeated \textit{k}-fold. The results show that when time equated, the proposed fitness function results in significant improvement over the current state-of-the-art baseline method which uses an internal single \textit{k}-fold. Furthermore, the proposed extension is very simple to implement on top of existing evolutionary computation methods, and can provide essentially a free boost in generalisation/testing performance.Comment: 19 pages, 4 figure

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances

    EXPObench: Benchmarking Surrogate-based Optimisation Algorithms on Expensive Black-box Functions

    Get PDF
    Surrogate algorithms such as Bayesian optimisation are especially designed for black-box optimisation problems with expensive objectives, such as hyperparameter tuning or simulation-based optimisation. In the literature, these algorithms are usually evaluated with synthetic benchmarks which are well established but have no expensive objective, and only on one or two real-life applications which vary wildly between papers. There is a clear lack of standardisation when it comes to benchmarking surrogate algorithms on real-life, expensive, black-box objective functions. This makes it very difficult to draw conclusions on the effect of algorithmic contributions. A new benchmark library, EXPObench, provides first steps towards such a standardisation. The library is used to provide an extensive comparison of six different surrogate algorithms on four expensive optimisation problems from different real-life applications. This has led to new insights regarding the relative importance of exploration, the evaluation time of the objective, and the used model. A further contribution is that we make the algorithms and benchmark problem instances publicly available, contributing to more uniform analysis of surrogate algorithms. Most importantly, we include the performance of the six algorithms on all evaluated problem instances. This results in a unique new dataset that lowers the bar for researching new methods as the number of expensive evaluations required for comparison is significantly reduced.Comment: 13 page

    A review on the self and dual interactions between machine learning and optimisation

    Get PDF
    Machine learning and optimisation are two growing fields of artificial intelligence with an enormous number of computer science applications. The techniques in the former area aim to learn knowledge from data or experience, while the techniques from the latter search for the best option or solution to a given problem. To employ these techniques automatically and effectively aligning with the real aim of artificial intelligence, both sets of techniques are frequently hybridised, interacting with each other and themselves. This study focuses on such interactions aiming at (1) presenting a broad overview of the studies on self and dual interactions between machine learning and optimisation; (2) providing a useful tutorial for researchers and practitioners in both fields in support of collaborative work through investigation of the recent advances and analyses of the advantages and disadvantages of different techniques to tackle the same or similar problems; (3) clarifying the overlapping terminologies having different meanings used in both fields; (4) identifying research gaps and potential research directions

    Automatic machine learning:methods, systems, challenges

    Get PDF

    Automatic machine learning:methods, systems, challenges

    Get PDF
    This open access book presents the first comprehensive overview of general methods in Automatic Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first international challenge of AutoML systems. The book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. Many of the recent machine learning successes crucially rely on human experts, who select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters; however the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself

    Automatic Design of Artificial Neural Networks for Gamma-Ray Detection

    Get PDF
    The goal of this work is to investigate the possibility of improving current gamma/hadron discrimination based on their shower patterns recorded on the ground. To this end we propose the use of Convolutional Neural Networks (CNNs) for their ability to distinguish patterns based on automatically designed features. In order to promote the creation of CNNs that properly uncover the hidden patterns in the data, and at same time avoid the burden of hand-crafting the topology and learning hyper-parameters we resort to NeuroEvolution; in particular we use Fast-DENSER++, a variant of Deep Evolutionary Network Structured Representation. The results show that the best CNN generated by Fast-DENSER++ improves by a factor of 2 when compared with the results reported by classic statistical approaches. Additionally, we experiment ensembling the 10 best generated CNNs, one from each of the evolutionary runs; the ensemble leads to an improvement by a factor of 2.3. These results show that it is possible to improve the gamma/hadron discrimination based on CNNs that are automatically generated and are trained with instances of the ground impact patterns.info:eu-repo/semantics/publishedVersio

    Learning-Based Approaches for Graph Problems: A Survey

    Full text link
    Over the years, many graph problems specifically those in NP-complete are studied by a wide range of researchers. Some famous examples include graph colouring, travelling salesman problem and subgraph isomorphism. Most of these problems are typically addressed by exact algorithms, approximate algorithms and heuristics. There are however some drawback for each of these methods. Recent studies have employed learning-based frameworks such as machine learning techniques in solving these problems, given that they are useful in discovering new patterns in structured data that can be represented using graphs. This research direction has successfully attracted a considerable amount of attention. In this survey, we provide a systematic review mainly on classic graph problems in which learning-based approaches have been proposed in addressing the problems. We discuss the overview of each framework, and provide analyses based on the design and performance of the framework. Some potential research questions are also suggested. Ultimately, this survey gives a clearer insight and can be used as a stepping stone to the research community in studying problems in this field.Comment: v1: 41 pages; v2: 40 page

    Developing Efficient and Effective Intrusion Detection System using Evolutionary Computation

    Get PDF
    The internet and computer networks have become an essential tool in distributed computing organisations especially because they enable the collaboration between components of heterogeneous systems. The efficiency and flexibility of online services have attracted many applications, but as they have grown in popularity so have the numbers of attacks on them. Thus, security teams must deal with numerous threats where the threat landscape is continuously evolving. The traditional security solutions are by no means enough to create a secure environment, intrusion detection systems (IDSs), which observe system works and detect intrusions, are usually utilised to complement other defence techniques. However, threats are becoming more sophisticated, with attackers using new attack methods or modifying existing ones. Furthermore, building an effective and efficient IDS is a challenging research problem due to the environment resource restrictions and its constant evolution. To mitigate these problems, we propose to use machine learning techniques to assist with the IDS building effort. In this thesis, Evolutionary Computation (EC) algorithms are empirically investigated for synthesising intrusion detection programs. EC can construct programs for raising intrusion alerts automatically. One novel proposed approach, i.e. Cartesian Genetic Programming, has proved particularly effective. We also used an ensemble-learning paradigm, in which EC algorithms were used as a meta-learning method to produce detectors. The latter is more fully worked out than the former and has proved a significant success. An efficient IDS should always take into account the resource restrictions of the deployed systems. Memory usage and processing speed are critical requirements. We apply a multi-objective approach to find trade-offs among intrusion detection capability and resource consumption of programs and optimise these objectives simultaneously. High complexity and the large size of detectors are identified as general issues with the current approaches. The multi-objective approach is used to evolve Pareto fronts for detectors that aim to maintain the simplicity of the generated patterns. We also investigate the potential application of these algorithms to detect unknown attacks

    Efficient Multi-Objective NeuroEvolution in Computer Vision and Applications for Threat Identification

    Get PDF
    Concealed threat detection is at the heart of critical security systems designed to en- sure public safety. Currently, methods for threat identification and detection are primarily manual, but there is a recent vision to automate the process. Problematically, developing computer vision models capable of operating in a wide range of settings, such as the ones arising in threat detection, is a challenging task involving multiple (and often conflicting) objectives. Automated machine learning (AutoML) is a flourishing field which endeavours to dis- cover and optimise models and hyperparameters autonomously, providing an alternative to classic, effort-intensive hyperparameter search. However, existing approaches typ- ically show significant downsides, like their (1) high computational cost/greediness in resources, (2) limited (or absent) scalability to custom datasets, (3) inability to provide competitive alternatives to expert-designed and heuristic approaches and (4) common consideration of a single objective. Moreover, most existing studies focus on standard classification tasks and thus cannot address a plethora of problems in threat detection and, more broadly, in a wide variety of compelling computer vision scenarios. This thesis leverages state-of-the-art convolutional autoencoders and semantic seg- mentation (Chapter 2) to develop effective multi-objective AutoML strategies for neural architecture search. These strategies are designed for threat detection and provide in- sights into some quintessential computer vision problems. To this end, the thesis first introduces two new models, a practical Multi-Objective Neuroevolutionary approach for Convolutional Autoencoders (MONCAE, Chapter 3) and a Resource-Aware model for Multi-Objective Semantic Segmentation (RAMOSS, Chapter 4). Interestingly, these ap- proaches reached state-of-the-art results using a fraction of computational resources re- quired by competing systems (0.33 GPU days compared to 3150), yet allowing for mul- tiple objectives (e.g., performance and number of parameters) to be simultaneously op- timised. This drastic speed-up was possible through the coalescence of neuroevolution algorithms with a new heuristic technique termed Progressive Stratified Sampling. The presented methods are evaluated on a range of benchmark datasets and then applied to several threat detection problems, outperforming previous attempts in balancing multiple objectives. The final chapter of the thesis focuses on thread detection, exploiting these two mod- els and novel components. It presents first a new modification of specialised proxy scores to be embedded in RAMOSS, enabling us to further accelerate the AutoML process even more drastically while maintaining avant-garde performance (above 85% precision for SIXray). This approach rendered a new automatic evolutionary Multi-objEctive method for cOncealed Weapon detection (MEOW), which outperforms state-of-the-art models for threat detection in key datasets: a gold standard benchmark (SixRay) and a security- critical, proprietary dataset. Finally, the thesis shifts the focus from neural architecture search to identifying the most representative data samples. Specifically, the Multi-objectIve Core-set Discovery through evolutionAry algorithMs in computEr vision approach (MIRA-ME) showcases how the new neural architecture search techniques developed in previous chapters can be adapted to operate on data space. MIRA-ME offers supervised and unsupervised ways to select maximally informative, compact sets of images via dataset compression. This operation can offset the computational cost further (above 90% compression), with a minimal sacrifice in performance (less than 5% for MNIST and less than 13% for SIXray). Overall, this thesis proposes novel model- and data-centred approaches towards a more widespread use of AutoML as an optimal tool for architecture and coreset discov- ery. With the presented and future developments, the work suggests that AutoML can effectively operate in real-time and performance-critical settings such as in threat de- tection, even fostering interpretability by uncovering more parsimonious optimal models. More widely, these approaches have the potential to provide effective solutions to chal- lenging computer vision problems that nowadays are typically considered unfeasible for AutoML settings
    corecore