115 research outputs found

    Improving frequency and ROCOF accuracy during faults, for P class phasor measurement units

    Get PDF
    Abstract—Many aspects of Phasor Measurement Unit (PMU) performance are tested using the existing (and evolving) IEEE C37.118 standard. However, at present the reaction of PMUs to power network faults is not assessed under C37.118. Nevertheless, the behaviour of PMUs under such conditions may be important when the entire closed loop of power system measurement, control and response is considered. This paper presents ways in which P class PMU algorithms may be augmented with software which reduces peak frequency excursions during unbalanced faults by factors of typically between 2.5 and 6 with no additional effect on response time, delay or latency. Peak ROCOF excursions are also reduced. In addition, extra filtering which still allows P class response requirements to be met can further reduce excursions, in particular ROCOF. Further improvement of triggering by using midpoint taps of the P class filter, and adaptive filtering, allows peak excursions to be reduced by total factors of between 8 and 40 (or up to 180 for ROCOF), compared to the C37.118 reference device. Steady-state frequency and ROCOF errors during sustained faults or unbalanced operation, particularly under unbalanced conditions, can be reduced by factors of hundreds or thousands compared to the C37.118 reference device

    Synchrophasor Assisted Efficient Fault Location Techniques In An Active Distribution Network

    Get PDF
    Reliability of an electrical system can be improved by an efficient fault location identification for the fast repair and remedial actions. This scenario changes when there are large penetrations of distributed generation (DG) which makes the distribution system an active distribution system. An efficient use of synchrophasors in the distribution network is studied with bidirectional power flow, harmonics and low angle difference consideration which are not prevalent in a transmission network. A synchrophasor estimation algorithm for the P class PMU is developed and applied to identify efficient fault location. A fault location technique using two ended synchronized measurement is derived from the principle of transmission line settings to work in a distribution network which is independent of line parameters. The distribution systems have less line length, harmonics and different sized line conductors, which affects the sensitivity of the synchronized measurements, Total Vector Error (TVE) and threshold for angular separation between different points in the network. A new signal processing method based on Discrete Fourier Transform (DFT) is utilized to work in a distribution network as specified in IEEE C37.118 (2011) standard for synchrophasor. A specific P and M classes of synchrophasor measurements are defined in the standard. A tradeoff between fast acting P class and detailed measurement M class is sought to work specifically in the distribution system settings which is subjected to large amount of penetrations from the renewable energy

    Impact of Estimation Uncertainty in PMU-Based Resynchronization of Continental Europe Synchronous Areas

    Get PDF
    Power system stability is a task that every system operator (SO) is required to achieve daily to ensure an uninterruptible power supply. Especially at the transmission level, for each SO it is of utmost importance to ensure proper exchange of information with other SOs, mainly in case of contingencies. However, in the last years, two major events led to the splitting of Continental Europe into two synchronous areas. These events were caused by anomalous conditions which involved in one case the fault of a transmission line and in the other a fire outage in proximity to high-voltage lines. This work analyzes these two events from the measurement point of view. In particular, we discuss the possible impact of estimation uncertainty on control decisions based on measurements of instantaneous frequency. For this purpose, we simulate five different configurations of phasor measurement units (PMUs), as characterized by different signal models, processing routines, and estimation accuracy in the presence of off-nominal or dynamic conditions. The objective is to establish the accuracy of the frequency estimates in transient conditions, more specifically during the resynchronization of the Continental Europe area. Based on this knowledge, it is possible to set more suitable conditions for resynchronization operations: the idea is to consider not only the frequency deviation between the two areas but also to take into account the respective measurement uncertainty. As confirmed by the analysis of the two real-world scenarios, such an approach would allow for minimizing the probability of adverse or even dangerous conditions such as dampened oscillations and inter-modulations

    Impact of distributed generation mix on the effectiveness of islanded operation detection

    Get PDF
    Distributed generation can be understood as a process where large scale power generation is gradually replaced by smaller power generation facilities with reduced power yield, and mostly connected at the system distribution level. One of the most important requirements for interconnecting distributed generation to healthy power networks is the Loss of Mains (or Islanding) detection. During a Loss of Mains (LOM) event a part of the grid (including distributed generation) losses physical connection with rest of the grid. A condition like this should be detected and actions to disconnect distributed generation should be initiated, in order to protect life and property. A very common passive method used to detect an islanding event, is the Rate of Change of Frequency (ROCOF). Since distribution networks nowadays are accommodating a great amount converter-interfaced generation, there is a risk that such methods may fail to successfully operate or operate spuriously, putting system stability at risk. Most of the existing LOM protection performance studies, consider only a single generator within the islanded part of the network. While historically such approach was reasonable, rapidly increasing numbers of DG connections lead to high probability of islanding with more than one generator in the mix. Therefore, this paper, considers various mixes of generation to investigate how this impacts LOM detection performance. In particular studies are undertaken with a few identified most likely combinations of distributed generators

    An Analysis of Software and Hardware Development in the PMU-Based Technology and Suggestions Regarding Its Implementation in the Polish Power Grid

    Get PDF
    The ongoing evolution of electric power systems (EPS), especially distribution systems within the EPS structure, is driven by the implementation of the smart grid framework. This requires new approaches and technologies to continue ensuring a reliable and secure supply to end users. Fluctuating output from solar photovoltaic and wind plants can cause voltage and power variations in the feeders. In the power grid framework, phasor measurement units (PMUs) are recognized to be an invaluable aid in ensuring the secure operation and stability of transmission systems. The synchrophasor technique requires a high-accuracy time stamping of all the measurements within the analyzed power system area. It must be emphasized that the harmonic injection from power electronic components such as fluorescent lighting, computers, and power inverters of motors and generators can increase total harmonic distortion (THD) levels on distribution feeders and modify the conventional patterns of voltage and current signals. Therefore, what is vital for the functional reliability of synchronous measurements is the implementation of measurement algorithms, which can realize high-accuracy measurements, both in quasi-static and dynamic EPS operating conditions. This article presents the results of software simulations and hardware tests of measurement algorithms that meet the requirements of the IEEE C37.118â„¢-2011 Standard

    Methodology and Tools for Field Testing of Synchrophasor Systems

    Get PDF
    The electrical power grid, as one of today’s most critical infrastructures, requires constant monitoring by operators to be aware of and react to any threats to the system’s condition. With control centers typically located far away from substations and other physical grid equipment, field measurement data forms the basis for a vast majority of control decisions in power system operation. For that reason, it is imperative to ensure the highest level of data integrity as erroneous data may lead to inappropriate control actions with potentially devastating consequences. Performance of one of the most advanced monitoring systems, the synchrophasor system, is the focus of this thesis. This research will look at testing techniques used for performance assessment of synchrophasor system performance in the field. Existing methods will be reviewed and evaluated for deficiencies in capturing system performance regarding data quality. The focus of this work will be on improving synchrophasor data quality, by introducing new testing methodology that utilizes a nested testing approach for end-to-end testing in the field using a portable test set and associated software tools. The capability of such methods and these tools to fully characterize and evaluate the performance of synchrophasor systems in the field will be validated through implementation in a large-scale testbed. The purpose of this research is to specify, develop and implement a methodology and associated tools for field-testing of synchrophasor systems. To this day, there is no dedicated standard for field-testing of synchrophasor systems. This resulted in an inability to define widely accepted procedures to detect deterioration of system performance due to poor data quality and caused communication failures, unacceptable device and subsystem accuracy, or loss of calibration. This work will demonstrate how the new approach addresses the mentioned performance assessment gap. The feasibility of implementation of the proposed test procedures will be demonstrated using different test system configurations available in a large-scale testbed. The proposed method is fully leveraging the benefits of a portable device specifically developed for field-testing, which may be used for improvement of commissioning, maintenance and troubleshooting tests for existing installations. Use Cases resulting from this work will illustrate the practical benefits of the proposed methodology and associated tools

    Advanced Wide-Area Monitoring System Design, Implementation, and Application

    Get PDF
    Wide-area monitoring systems (WAMSs) provide an unprecedented way to collect, store and analyze ultra-high-resolution synchrophasor measurements to improve the dynamic observability in power grids. This dissertation focuses on designing and implementing a wide-area monitoring system and a series of applications to assist grid operators with various functionalities. The contributions of this dissertation are below: First, a synchrophasor data collection system is developed to collect, store, and forward GPS-synchronized, high-resolution, rich-type, and massive-volume synchrophasor data. a distributed data storage system is developed to store the synchrophasor data. A memory-based cache system is discussed to improve the efficiency of real-time situation awareness. In addition, a synchronization system is developed to synchronize the configurations among the cloud nodes. Reliability and Fault-Tolerance of the developed system are discussed. Second, a novel lossy synchrophasor data compression approach is proposed. This section first introduces the synchrophasor data compression problem, then proposes a methodology for lossy data compression, and finally presents the evaluation results. The feasibility of the proposed approach is discussed. Third, a novel intelligent system, SynchroService, is developed to provide critical functionalities for a synchrophasor system. Functionalities including data query, event query, device management, and system authentication are discussed. Finally, the resiliency and the security of the developed system are evaluated. Fourth, a series of synchrophasor-based applications are developed to utilize the high-resolution synchrophasor data to assist power system engineers to monitor the performance of the grid as well as investigate the root cause of large power system disturbances. Lastly, a deep learning-based event detection and verification system is developed to provide accurate event detection functionality. This section introduces the data preprocessing, model design, and performance evaluation. Lastly, the implementation of the developed system is discussed

    Algorithms to Improve Performance of Wide Area Measurement Systems of Electric Power Systems

    Get PDF
    Power system operation has become increasingly complex due to high load growth and increasing market pressure. The occurrence of major blackouts in many power systems around the world has necessitated the use of synchrophasor based Wide Area Measurement Systems (WAMS) for grid monitoring. Synchrophasor technology is comparatively new in the area of power systems. Phasor measurement units (PMUs) and phasor data concentrators (PDCs) are new to the substations and control centers. Even though PMUs have been installed in many power grids, the number of installed PMUs is still low with respect to the number of buses or lines. Currently, WAMS systems face many challenges. This thesis is an attempt towards solving some of the technical problems faced by the WAMS systems. This thesis addresses four problems related to synchrophasor estimation, synchrophasor quality detection, synchrophasor communication and synchrophasor application. In the first part, a synchrophasor estimation algorithm has been proposed. The proposed algorithm is simple, requires lesser computations, and satisfies all the steady state and dynamic performance criteria of the IEEE Standard C37.118.1-2011 and also suitable for protection applications. The proposed algorithm performs satisfactorily during system faults and it has lower response time during larger disturbances. In the second part, areas of synchrophasor communication which can be improved by applying compressive sampling (CS) are identified. It is shown that CS can reduce bandwidth requirements for WAMS networks. It is also shown that CS can successfully reconstruct system dynamics at higher rates using synchrophasors reported at sub-Nyquist rate. Many synchrophasor applications are not designed to use fault/switching transient synchrophasors. In this thesis, an algorithm has been proposed to detect fault/switching transient synchrophasors. The proposed algorithm works satisfactorily during smaller and larger step changes, oscillations and missing data. Fault transient synchrophasors are not usable in WAMS applications as they represent a combination of fault and no-fault scenario. In the fourth part, two algorithms have been proposed to extract fault synchrophasor from fault transient synchrophasor in PDC. The proposed algorithms extract fault synchrophasors accurately in presence of noise, off-nominal frequencies, harmonics, and frequency estimation errors

    Communication based loss-of-mains protection method by frequency correlation

    Get PDF
    Due to the increasing penetration of distributed generation (DGs) in the distribution network in high numbers and proportions, and its conspicuous impact on power system stability. This occurs during a wide system disturbance in the power system, the DGs will start to disconnect from the main source in large proportions. This will further affect the power system stability and causes damages to its components and DGs. This thesis investigates in the reliability, security, and efficiency of satellite and internet communications, specifically for loss of mains (LOM) protection and exploring the strengths, the weaknesses, the feasibility of each type of communications, and the requirements of communication system components. By using communications network to send Phasor Measurement Unit (PMU) data to DGs protection equipment that are connected at remote areas all over UK, the LOM protection can be improved, obtain synchronization, precision, and coordination among power protection components. Satellite communication is chosen as it makes a better communication method when it comes to the installation, construction, urban disruption, time saving, and the installation and annual cost on every participant. However, the high latency issue is approached and solved by making a few changes in the communication protocol format and the data requirements to reduce the effect of latency to a level that can be tolerated. This thesis presents the development of a novel LOM protection method based on communication and frequency correlation. The stability and sensitivity assessment will show that this method is highly secure and reliable. It can also withstand a communication delay of 120ms without causing any nuisance tripping, and have a relay response to LOM operation of a maximum of 1s. The thesis also presents a novel method in time delay estimation that has been developed for power system applications. This method is called the Linear Trajectory Path (LTP) and its performance fulfils the LOM synchronisation requirements by succeeding in determining the time delay between the two data streams within the tolerated estimation error of ±100ms.Due to the increasing penetration of distributed generation (DGs) in the distribution network in high numbers and proportions, and its conspicuous impact on power system stability. This occurs during a wide system disturbance in the power system, the DGs will start to disconnect from the main source in large proportions. This will further affect the power system stability and causes damages to its components and DGs. This thesis investigates in the reliability, security, and efficiency of satellite and internet communications, specifically for loss of mains (LOM) protection and exploring the strengths, the weaknesses, the feasibility of each type of communications, and the requirements of communication system components. By using communications network to send Phasor Measurement Unit (PMU) data to DGs protection equipment that are connected at remote areas all over UK, the LOM protection can be improved, obtain synchronization, precision, and coordination among power protection components. Satellite communication is chosen as it makes a better communication method when it comes to the installation, construction, urban disruption, time saving, and the installation and annual cost on every participant. However, the high latency issue is approached and solved by making a few changes in the communication protocol format and the data requirements to reduce the effect of latency to a level that can be tolerated. This thesis presents the development of a novel LOM protection method based on communication and frequency correlation. The stability and sensitivity assessment will show that this method is highly secure and reliable. It can also withstand a communication delay of 120ms without causing any nuisance tripping, and have a relay response to LOM operation of a maximum of 1s. The thesis also presents a novel method in time delay estimation that has been developed for power system applications. This method is called the Linear Trajectory Path (LTP) and its performance fulfils the LOM synchronisation requirements by succeeding in determining the time delay between the two data streams within the tolerated estimation error of ±100ms
    • …
    corecore