2,654 research outputs found

    Improving Foot-Mounted Inertial Navigation Through Real-Time Motion Classification

    Full text link
    We present a method to improve the accuracy of a foot-mounted, zero-velocity-aided inertial navigation system (INS) by varying estimator parameters based on a real-time classification of motion type. We train a support vector machine (SVM) classifier using inertial data recorded by a single foot-mounted sensor to differentiate between six motion types (walking, jogging, running, sprinting, crouch-walking, and ladder-climbing) and report mean test classification accuracy of over 90% on a dataset with five different subjects. From these motion types, we select two of the most common (walking and running), and describe a method to compute optimal zero-velocity detection parameters tailored to both a specific user and motion type by maximizing the detector F-score. By combining the motion classifier with a set of optimal detection parameters, we show how we can reduce INS position error during mixed walking and running motion. We evaluate our adaptive system on a total of 5.9 km of indoor pedestrian navigation performed by five different subjects moving along a 130 m path with surveyed ground truth markers.Comment: In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN'17), Sapporo, Japan, Sep. 18-21, 201

    Adaptive Indoor Pedestrian Tracking Using Foot-Mounted Miniature Inertial Sensor

    Get PDF
    This dissertation introduces a positioning system for measuring and tracking the momentary location of a pedestrian, regardless of the environmental variations. This report proposed a 6-DOF (degrees of freedom) foot-mounted miniature inertial sensor for indoor localization which has been tested with simulated and real-world data. To estimate the orientation, velocity and position of a pedestrian we describe and implement a Kalman filter (KF) based framework, a zero-velocity updates (ZUPTs) methodology, as well as, a zero-velocity (ZV) detection algorithm. The novel approach presented in this dissertation uses the interactive multiple model (IMM) filter in order to determine the exact state of pedestrian with changing dynamics. This work evaluates the performance of the proposed method in two different ways: At first a vehicle traveling in a straight line is simulated using commonly used kinematic motion models in the area of tracking (constant velocity (CV), constant acceleration (CA) and coordinated turn (CT) models) which demonstrates accurate state estimation of targets with changing dynamics is achieved through the use of multiple model filter models. We conclude by proposing an interactive multiple model estimator based adaptive indoor pedestrian tracking system for handling dynamic motion which can incorporate different motion types (walking, running, sprinting and ladder climbing) whose threshold is determined individually and IMM adjusts itself adaptively to correct the change in motion models. Results indicate that the overall IMM performance will at all times be similar to the best individual filter model within the IMM

    Design and Testing of a Multi-Sensor Pedestrian Location and Navigation Platform

    Get PDF
    Navigation and location technologies are continually advancing, allowing ever higher accuracies and operation under ever more challenging conditions. The development of such technologies requires the rapid evaluation of a large number of sensors and related utilization strategies. The integration of Global Navigation Satellite Systems (GNSSs) such as the Global Positioning System (GPS) with accelerometers, gyros, barometers, magnetometers and other sensors is allowing for novel applications, but is hindered by the difficulties to test and compare integrated solutions using multiple sensor sets. In order to achieve compatibility and flexibility in terms of multiple sensors, an advanced adaptable platform is required. This paper describes the design and testing of the NavCube, a multi-sensor navigation, location and timing platform. The system provides a research tool for pedestrian navigation, location and body motion analysis in an unobtrusive form factor that enables in situ data collections with minimal gait and posture impact. Testing and examples of applications of the NavCube are provided

    Zero-Velocity Detection - A Bayesian Approach to Adaptive Thresholding

    Get PDF
    A Bayesian zero-velocity detector for foot-mounted inertial navigation systems is presented. The detector extends existing zero-velocity detectors based on the likelihood-ratio test, and allows, possibly time-dependent, prior information about the two hypotheses - the sensors being stationary or in motion - to be incorporated into the test. It is also possible to incorporate information about the cost of a missed detection or a false alarm. Specifically, we consider an hypothesis prior based on the velocity estimates provided by the navigation system and an exponential model for how the cost of a missed detection increases with the time since the last zero-velocity update. Thereby, we obtain a detection threshold that adapts to the motion characteristics of the user. Thus, the proposed detection framework efficiently solves one of the key challenges in current zero-velocity-aided inertial navigation systems: the tuning of the zero-velocity detection threshold. A performance evaluation on data with normal and fast gait demonstrates that the proposed detection framework outperforms any detector that chooses two separate fixed thresholds for the two gait speeds

    FootSLAM meets adaptive thresholding

    Get PDF
    The is the author accepted manuscript. The final version is available from IEEE via the DOI in this recordCalibration of the zero-velocity detection threshold is an essential prerequisite for zero-velocity-aided inertial navigation. However, the literature is lacking a self-contained calibration method, suitable for large-scale use in unprepared environments without map information or pre-deployed infrastructure. In this paper, the calibration of the zero-velocity detection threshold is formulated as a maximum likelihood problem. The likelihood function is approximated using estimation quantities readily available from the FootSLAM algorithm. Thus, we obtain a method for adaptive thresholding that does not require map information, measurements from supplementary sensors, or user input. Experimental evaluations are conducted using data with different gait speeds, sensor placements, and walking trajectories. The proposed calibration method is shown to outperform fixed-threshold zero-velocity detectors and a benchmark using a speed-based threshold classifier.National Institute of Standards and Technology (NIST

    Human Motion Analysis with Wearable Inertial Sensors

    Get PDF
    High-resolution, quantitative data obtained by a human motion capture system can be used to better understand the cause of many diseases for effective treatments. Talking about the daily care of the aging population, two issues are critical. One is to continuously track motions and position of aging people when they are at home, inside a building or in the unknown environment; the other is to monitor their health status in real time when they are in the free-living environment. Continuous monitoring of human movement in their natural living environment potentially provide more valuable feedback than these in laboratory settings. However, it has been extremely challenging to go beyond laboratory and obtain accurate measurements of human physical activity in free-living environments. Commercial motion capture systems produce excellent in-studio capture and reconstructions, but offer no comparable solution for acquisition in everyday environments. Therefore in this dissertation, a wearable human motion analysis system is developed for continuously tracking human motions, monitoring health status, positioning human location and recording the itinerary. In this dissertation, two systems are developed for seeking aforementioned two goals: tracking human body motions and positioning a human. Firstly, an inertial-based human body motion tracking system with our developed inertial measurement unit (IMU) is introduced. By arbitrarily attaching a wearable IMU to each segment, segment motions can be measured and translated into inertial data by IMUs. A human model can be reconstructed in real time based on the inertial data by applying high efficient twists and exponential maps techniques. Secondly, for validating the feasibility of developed tracking system in the practical application, model-based quantification approaches for resting tremor and lower extremity bradykinesia in Parkinson’s disease are proposed. By estimating all involved joint angles in PD symptoms based on reconstructed human model, angle characteristics with corresponding medical ratings are employed for training a HMM classifier for quantification. Besides, a pedestrian positioning system is developed for tracking user’s itinerary and positioning in the global frame. Corresponding tests have been carried out to assess the performance of each system
    • …
    corecore