2,989 research outputs found

    Linear theory for filtering nonlinear multiscale systems with model error

    Full text link
    We study filtering of multiscale dynamical systems with model error arising from unresolved smaller scale processes. The analysis assumes continuous-time noisy observations of all components of the slow variables alone. For a linear model with Gaussian noise, we prove existence of a unique choice of parameters in a linear reduced model for the slow variables. The linear theory extends to to a non-Gaussian, nonlinear test problem, where we assume we know the optimal stochastic parameterization and the correct observation model. We show that when the parameterization is inappropriate, parameters chosen for good filter performance may give poor equilibrium statistical estimates and vice versa. Given the correct parameterization, it is imperative to estimate the parameters simultaneously and to account for the nonlinear feedback of the stochastic parameters into the reduced filter estimates. In numerical experiments on the two-layer Lorenz-96 model, we find that parameters estimated online, as part of a filtering procedure, produce accurate filtering and equilibrium statistical prediction. In contrast, a linear regression based offline method, which fits the parameters to a given training data set independently from the filter, yields filter estimates which are worse than the observations or even divergent when the slow variables are not fully observed

    Lessons in uncertainty quantification for turbulent dynamical systems

    Get PDF

    Combining Stochastic Parameterized Reduced-Order Models with Machine Learning for Data Assimilation and Uncertainty Quantification with Partial Observations

    Full text link
    A hybrid data assimilation algorithm is developed for complex dynamical systems with partial observations. The method starts with applying a spectral decomposition to the entire spatiotemporal fields, followed by creating a machine learning model that builds a nonlinear map between the coefficients of observed and unobserved state variables for each spectral mode. A cheap low-order nonlinear stochastic parameterized extended Kalman filter (SPEKF) model is employed as the forecast model in the ensemble Kalman filter to deal with each mode associated with the observed variables. The resulting ensemble members are then fed into the machine learning model to create an ensemble of the corresponding unobserved variables. In addition to the ensemble spread, the training residual in the machine learning-induced nonlinear map is further incorporated into the state estimation that advances the quantification of the posterior uncertainty. The hybrid data assimilation algorithm is applied to a precipitating quasi-geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two-level QG model. The complicated nonlinearities in the PQG equations prevent traditional methods from building simple and accurate reduced-order forecast models. In contrast, the SPEKF model is skillful in recovering the intermittent observed states, and the machine learning model effectively estimates the chaotic unobserved signals. Utilizing the calibrated SPEKF and machine learning models under a moderate cloud fraction, the resulting hybrid data assimilation remains reasonably accurate when applied to other geophysical scenarios with nearly clear skies or relatively heavy rainfall, implying the robustness of the algorithm for extrapolation
    • …
    corecore