2,526 research outputs found

    Enhancing Security and Energy Efficiency in Wireless Sensor Network Routing with IOT Challenges: A Thorough Review

    Get PDF
    Wireless sensor networks (WSNs) have emerged as a crucial component in the field of networking due to their cost-effectiveness, efficiency, and compact size, making them invaluable for various applications. However, as the reliance on WSN-dependent applications continues to grow, these networks grapple with inherent limitations such as memory and computational constraints. Therefore, effective solutions require immediate attention, especially in the age of the Internet of Things (IoT), which largely relies on the effectiveness of WSNs. This study undertakes a comprehensive review of research conducted between 2018 and 2020, categorizing it into six main domains: 1) Providing an overview of WSN applications, management, and security considerations. 2) Focusing on routing and energy-saving techniques. 3) Reviewing the development of methods for information gathering, emphasizing data integrity and privacy. 4) Emphasizing connectivity and positioning techniques. 5) Examining studies that explore the integration of IoT technology into WSNs with an eye on secure data transmission. 6) Highlighting research efforts aimed at energy efficiency. The study addresses the motivation behind employing WSN applications in IoT technologies, as well as the challenges, obstructions, and solutions related to their application and development. It underscores that energy consumption remains a paramount issue in WSNs, with untapped potential for improving energy efficiency while ensuring robust security. Furthermore, it identifies existing approaches' weaknesses, rendering them inadequate for achieving energy-efficient routing in secure WSNs. This review sheds light on the critical challenges and opportunities in the field, contributing to a deeper understanding of WSNs and their role in secure IoT applications

    Energy distribution control in wireless sensor networks through range optimization

    Get PDF
    A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient use of nodes. Routing decision and transmission power selection are intrinsically connected since the transmission power of a node is adjusted depending on the location of the next hop. In this paper, we propose a location-based routing framework to control the energy distribution in a network where transmission ranges, hence powers, of nodes are determined based on their locations. We show that the proposed framework is sufficiently general to investigate the minimum-energy and maximum-lifetime routing problems. It is shown that via the location based strategy the network lifetime can be improved by 70% and the total energy consumption can be decreased to three-fourths to one-third of the constant transmission range strategy depending on the propagation medium and the size of the network

    Towards Massive Machine Type Communications in Ultra-Dense Cellular IoT Networks: Current Issues and Machine Learning-Assisted Solutions

    Get PDF
    The ever-increasing number of resource-constrained Machine-Type Communication (MTC) devices is leading to the critical challenge of fulfilling diverse communication requirements in dynamic and ultra-dense wireless environments. Among different application scenarios that the upcoming 5G and beyond cellular networks are expected to support, such as eMBB, mMTC and URLLC, mMTC brings the unique technical challenge of supporting a huge number of MTC devices, which is the main focus of this paper. The related challenges include QoS provisioning, handling highly dynamic and sporadic MTC traffic, huge signalling overhead and Radio Access Network (RAN) congestion. In this regard, this paper aims to identify and analyze the involved technical issues, to review recent advances, to highlight potential solutions and to propose new research directions. First, starting with an overview of mMTC features and QoS provisioning issues, we present the key enablers for mMTC in cellular networks. Along with the highlights on the inefficiency of the legacy Random Access (RA) procedure in the mMTC scenario, we then present the key features and channel access mechanisms in the emerging cellular IoT standards, namely, LTE-M and NB-IoT. Subsequently, we present a framework for the performance analysis of transmission scheduling with the QoS support along with the issues involved in short data packet transmission. Next, we provide a detailed overview of the existing and emerging solutions towards addressing RAN congestion problem, and then identify potential advantages, challenges and use cases for the applications of emerging Machine Learning (ML) techniques in ultra-dense cellular networks. Out of several ML techniques, we focus on the application of low-complexity Q-learning approach in the mMTC scenarios. Finally, we discuss some open research challenges and promising future research directions.Comment: 37 pages, 8 figures, 7 tables, submitted for a possible future publication in IEEE Communications Surveys and Tutorial

    Energy Optimization Efficiency in Wireless Sensor Networks for Forest Fire Detection:: An Innovative Sleep Technique

    Get PDF
    Wireless Sensor Networks (WSNs) have the potential to play a significant role in forest fire detection and prevention. However, limited resources, such as short battery life pose challenges for the energy efficiency and longevity of WSN-based IoT networks. This paper focused on the energy efficiency aspect and proposed the ECP-LEACH protocol to optimize energy consumption in forest fire detection cases. The proposed protocol consists of two main components: a threshold monitoring module and a sleep scheduling module. The threshold monitoring module continuously monitors energy consumption and triggers sleep mode for nodes surpassing the predetermined threshold. The ECP-LEACH protocol offers a promising solution for improving energy efficiency in WSN-based IoT networks for forest fire detection. By optimizing sleep scheduling and duty cycles, the ECP-LEACH protocol enables significant energy savings and extended network lifetim

    Internet of Things (IoT) and the Energy Sector

    Get PDF
    Integration of renewable energy and optimization of energy use are key enablers of sustainable energy transitions and mitigating climate change. Modern technologies such the Internet of Things (IoT) offer a wide number of applications in the energy sector, i.e, in energy supply, transmission and distribution, and demand. IoT can be employed for improving energy efficiency, increasing the share of renewable energy, and reducing environmental impacts of the energy use. This paper reviews the existing literature on the application of IoT in in energy systems, in general, and in the context of smart grids particularly. Furthermore, we discuss enabling technologies of IoT, including cloud computing and different platforms for data analysis. Furthermore, we review challenges of deploying IoT in the energy sector, including privacy and security, with some solutions to these challenges such as blockchain technology. This survey provides energy policy-makers, energy economists, and managers with an overview of the role of IoT in optimization of energy systems.Peer reviewe

    A survey of routing protocols for energy constrained ad hoc wireless networks

    Get PDF
    In this survey we review energy-aware routing protocols for wireless multihop ad hoc networks and critically discuss the main results in this area. The classification presented is in no case unique but summarizes the chief characteristics of the many published proposals for energy conservation. A common pitfall detected in most of the studies is the lack of unambiguous notion of network's lifetime and hence of clear objective of the designed algorithm. We, therefore, define first what operational lifetime for ad hoc networks means and then analyze the achievements from that angle. After getting insight into the different energy-aware routing protocols we point out another approach for extending network's operational lifespan, which has been overlooked in the relevant literature.Peer Reviewe

    Energy Management in RFID-Sensor Networks: Taxonomy and Challenges

    Get PDF
    Ubiquitous Computing is foreseen to play an important role for data production and network connectivity in the coming decades. The Internet of Things (IoT) research which has the capability to encapsulate identification potential and sensing capabilities, strives towards the objective of developing seamless, interoperable and securely integrated systems which can be achieved by connecting the Internet with computing devices. This gives way for the evolution of wireless energy harvesting and power transmission using computing devices. Radio Frequency (RF) based Energy Management (EM) has become the backbone for providing energy to wireless integrated systems. The two main techniques for EM in RFID Sensor Networks (RSN) are Energy Harvesting (EH) and Energy Transfer (ET). These techniques enable the dynamic energy level maintenance and optimisation as well as ensuring reliable communication which adheres to the goal of increased network performance and lifetime. In this paper, we present an overview of RSN, its types of integration and relative applications. We then provide the state-of-the-art EM techniques and strategies for RSN from August 2009 till date, thereby reviewing the existing EH and ET mechanisms designed for RSN. The taxonomy on various challenges for EM in RSN has also been articulated for open research directives
    • …
    corecore