20,909 research outputs found

    Tracing sources of cadmium in agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a biotoxic heavy metal, which is accumulated by plants and animals and thereby enters the human food chain (Gray et al. 2003). The application of phosphate fertilisers has also resulted in the long-term accumulation of Cd in agricultural soils around the world, including New Zealand (NZ). In 1997, the main source of NZ phosphate fertilisers was changed from Nauru island phosphate rocks (450 mg Cd kg-1 P) to a variety of phosphate rocks with lower Cd concentrations, in order to meet more stringent Cd limits in P fertiliser. Following this change, the accumulation of Cd in topsoil samples from the Winchmore research farm (South Island, NZ) was evaluated and was found to have plateaued post-2000 (McDowell, 2012). In this study, stable isotope analysis was used to trace the fate of Cd in Winchmore farm soils in order to determine the cause of the plateau. The isotope ratio of Cd (δ114/110Cd) was measured in pre-2000 and post-2000 phosphate fertilisers, phosphate rocks, topsoil (0-7.5 cm) and control (unfertilised) subsoil (25-30 cm) samples from the Winchmore site. The analysed topsoil samples were archived samples collected over the period 1959-2015. The isotopic compositions of fertilised topsoils ranged from δ114/110Cd = 0.08 ± 0.03 to δ114/110Cd = 0.27 ± 0.04, which were comparable to pre-2000 fertilisers (δ114/110Cd = 0.10 ± 0.05 to 0.25 ± 0.04) but distinct from the post-2000 fertilisers (δ114/110Cd range of -0.17 ± 0.03 to 0.01 ± 0.05) and control subsoil (δ114/110Cd = -0.33 ± 0.04) (Salmanzadeh et al., 2017). We combined this stable isotope data with Bayesian modelling to estimate the contribution of different sources of Cd. An open source Bayesian isotope mixing model implemented in Matlab (Arendt et al., 2015) was used here with some modifications to estimate the fractional contribution of different sources of Cd through time including pre- and post-2000 fertilisers, and the control soil. The Matlab code of Arendt et al., 2015 was modified to consider only one isotope system (rather than two), and fewer sources. This modelling confirmed the dominant contribution (about 80%) of Nauru-derived (i.e. pre-2000) fertilisers in increasing the Cd concentration in Winchmore soils. To help constrain the soil Cd mass balance we used an existing model (CadBal) (Roberts and Longhurst, 2005), to estimate residual soil Cd and output fluxes based on known P fertiliser application rates, the initial Cd concentration, farm and soil type, and soil dry bulk density. We incorporated the isotope data into the mass balance expression in order to evaluate the performance of CadBal in estimating the past topsoil Cd accumulation and predicting the future concentrations and isotope ratios of Cd (up to 2030 AD). The results of mass balance modelling confirm that recent applications of phosphate fertilisers have not resulted in an accumulation of Cd during the most recent period, thus Cd removal by either leaching or crop uptake has increased, which is consistent with the modelled isotope data (Figure 1). We can conclude that it becomes possible to distinguish the sources of Cd within the soil using stable Cd isotopes (Imseng et al., 2018) and that the residual Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers (Salmanzadeh et al., 2017). One implication of this finding is that the contemporary applications of phosphate fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility, and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country. Figure 1. Results of Cd mass balance modelling in CadBal for the period of topsoil fertilisation including a prediction up to the year 2030 AD. (a) Mean concentration of Cd in the dryland treatment of Winchmore long-term irrigation trial (symbols) and the CadBal model (lines) outputs (red symbols = this study- plot 15 of Winchmore site; grey symbols = McDowell study-average of all plots; solid black line = dryland optimized CadBal from McDowell (2012) for all irrigation plots; black dashed line = Plot 15 dryland optimized CadBal-this study, first scenario; blue line = Plot 15 dryland optimized CadBal-this study, second scenario; red line = Plot 15 dryland optimized CadBal-this study, third scenario; red dashed line = Plot 15 dryland optimized CadBal-this study, fourth scenario); (b) Measured and modelled Cd isotope ratios based on CadBal outputs, isotope ratios measured in fertilisers and the fractionation factors of Wiggenhauser, et al. (2016); lines designate modelling scenarios as in (a), red dots are the third scenario with no fractionation (α factor not applied); (c) modeled scenario 3 (solid) and scenario 4 (dashed) isotope ratios in topsoil (red lines), leachate (blue lines) and pasture (green lines)

    Research and education for the development of integrated crop-livestock-fish farming systems in the tropics.

    Get PDF
    There is a vast potential for Asia's numerous and needy small-scale farmers to enjoy the benefits of integration of aquaculture into farming systems. This publication attempts to create a framework for an interdisciplinary approach to research and education in integrated farming - a fusion of agriculture and aquaculture sciences.Integrated farming, Research, Education, Tropics, Farm Management,

    Source-tracking cadmium in New Zealand agricultural soils: a stable isotope approach

    Get PDF
    Cadmium (Cd) is a toxic heavy metal, which is accumulated by plants and animals and therefore enters the human food chain. In New Zealand (NZ), where Cd mainly originates from the application of phosphate fertilisers, stable isotopes can be used to trace the fate of Cd in soils and potentially the wider environment due to the limited number of sources in this setting. Prior to 1997, extraneous Cd added to soils in P fertilisers was essentially limited to a single source, the small pacific island of Nauru. Analysis of Cd isotope ratios (ɛ114/110Cd) in Nauru rock phosphate, pre-1997 superphosphate fertilisers, and Canterbury (Lismore Stony Silt Loam) topsoils (Winchmore Research Farm) has demonstrated their close similarity with respect to ɛ114/110Cd. We report a consistent ɛ114/110Cd signature in fertiliser-derived Cd throughout the latter twentieth century. This finding is useful because it allows the application of mixing models to determine the proportions of fertiliser-derived Cd in the wider environment. We believe this approach has good potential because we also found the ɛ114/110Cd in fertilisers to be distinct from unfertilised Canterbury subsoils. In our analysis of the Winchmore topsoil series (1949-2015), the ɛ114/110Cd remained quite constant following the change from Nauru to other rock phosphate sources in 1997, despite a corresponding shift in fertiliser ɛ114/110Cd at this time. We can conclude that to the present day, the Cd in topsoil at Winchmore still mainly originates from historical phosphate fertilisers. One implication of this finding is that the current applications of P fertiliser are not resulting in further Cd accumulation. We aim to continue our research into Cd fate, mobility and transformations in the NZ environment by applying Cd isotopes in soils and aquatic environments across the country

    Research and education for the development of integrated crop-livestock-fish farming systems in the tropics

    Get PDF
    There is a vast potential for Asia's numerous and needy small-scale farmers to enjoy the benefits of integration of aquaculture into farming systems. This publication attempts to create a framework for an interdisciplinary approach to research and education in integrated farming - a fusion of agriculture and aquaculture sciences.Integrated farming, Research, Education, Tropics

    ENERGY EFFICIENCY AND LIFE CYCLE ANALYSIS OF ORGANIC AND CONVENTIONAL OLIVE GROVES IN THE MESSARA VALLEY, CRETE, GREECE.

    Get PDF
    Environmental Impacts of agricultural activities have to be assessed in order to address cultural practices and the type of farming that are best suited to avoid the trade-off between the Ecology and the Economy. Furthermore, this study, comparing the environmental impacts with the Life Cycle Analysis (LCA) of Organic and Conventional olive oil production, is proposing to consider the relationship between the Energy Efficiency and the environmental impacts, notably the Climate Change (Global Warming contribution through Greenhouse Gas emission). The LCA is used to take into account the impacts of the production system from the Cradle (input production) to the Farm gate (final farm product) and considers 7 environmental impacts potential categories: Global Warming, Acidification, Eutrophication, Biodiversity, Erosion, Resource depletion, Ground water depletion. The study also assesses the Energy efficiency of both systems. The results show a clear difference between organic and conventional production, namely a two-fold improvement of the energy efficiency in the organic production. Even if the differences are reduced when the results are calculated on the yield rather than the area, the organic methods have a far smaller contribution to Global warming, Eutrophication, Biodiversity loss, Soil loss, Groundwater depletion and Energy use whereas, the Acidification potential is comparable in both cases. The study recommends encouraging some of the cultural practices that are used in the organic farming methods in order to reduce the burden of agriculture on the local and global ecology as well as the natural resources

    Report on proposals for the development, harmonisation and quality assurance of organic data collection and processing systems (DCPS)

    Get PDF
    This report represents the conclusion of the European seminar on development, harmonisation and quality assurance of organic data collection and processing systems (Berlin, April 2004) as well as of the first phase of the EISFOM-project. - In the first chapter the objectives and general approach of this workpackage are described. - Chapter 2 focuses on quality assurance, the main results of WP2 and WP3 and the European Seminar in Berlin (see Recke et al. 2004; https://orgprints.org/2935/. Furthermore, the strengths and weaknesses of organic DCPS (data collection and processing systems) are analysed and the chapter closes with proposals for the development of organic DCPSs. - Chapter 3 focuses on results of expert interviews on the main barriers for the implementation of improved organic statistical data collection and processing systems. - Chapter 4 gives a summary and some general conclusions are drawn. This report provides perspectives on how the above mentioned issues of the European Action Plan might be implemented

    Simulation of site-specific irrigation control strategies with sparse input data

    Get PDF
    Crop and irrigation water use efficiencies may be improved by managing irrigation application timing and volumes using physical and agronomic principles. However, the crop water requirement may be spatially variable due to different soil properties and genetic variations in the crop across the field. Adaptive control strategies can be used to locally control water applications in response to in-field temporal and spatial variability with the aim of maximising both crop development and water use efficiency. A simulation framework ‘VARIwise’ has been created to aid the development, evaluation and management of spatially and temporally varied adaptive irrigation control strategies (McCarthy et al., 2010). VARIwise enables alternative control strategies to be simulated with different crop and environmental conditions and at a range of spatial resolutions. An iterative learning controller and model predictive controller have been implemented in VARIwise to improve the irrigation of cotton. The iterative learning control strategy involves using the soil moisture response to the previous irrigation volume to adjust the applied irrigation volume applied at the next irrigation event. For field implementation this controller has low data requirements as only soil moisture data is required after each irrigation event. In contrast, a model predictive controller has high data requirements as measured soil and plant data are required at a high spatial resolution in a field implementation. Model predictive control involves using a calibrated model to determine the irrigation application and/or timing which results in the highest predicted yield or water use efficiency. The implementation of these strategies is described and a case study is presented to demonstrate the operation of the strategies with various levels of data availability. It is concluded that in situations of sparse data, the iterative learning controller performs significantly better than a model predictive controller

    Air pollution and livestock production

    Get PDF
    The air in a livestock farming environment contains high concentrations of dust particles and gaseous pollutants. The total inhalable dust can enter the nose and mouth during normal breathing and the thoracic dust can reach into the lungs. However, it is the respirable dust particles that can penetrate further into the gas-exchange region, making it the most hazardous dust component. Prolonged exposure to high concentrations of dust particles can lead to respiratory health issues for both livestock and farming staff. Ammonia, an example of a gaseous pollutant, is derived from the decomposition of nitrous compounds. Increased exposure to ammonia may also have an effect on the health of humans and livestock. There are a number of technologies available to ensure exposure to these pollutants is minimised. Through proactive means, (the optimal design and management of livestock buildings) air quality can be improved to reduce the likelihood of risks associated with sub-optimal air quality. Once air problems have taken hold, other reduction methods need to be applied utilising a more reactive approach. A key requirement for the control of concentration and exposure of airborne pollutants to an acceptable level is to be able to conduct real-time measurements of these pollutants. This paper provides a review of airborne pollution including methods to both measure and control the concentration of pollutants in livestock buildings
    • …
    corecore