1,339 research outputs found

    A target guided subband filter for acoustic event detection in noisy environments using wavelet packets

    Get PDF
    This paper deals with acoustic event detection (AED), such as screams, gunshots, and explosions, in noisy environments. The main aim is to improve the detection performance under adverse conditions with a very low signal-to-noise ratio (SNR). A novel filtering method combined with an energy detector is presented. The wavelet packet transform (WPT) is first used for time-frequency representation of the acoustic signals. The proposed filter in the wavelet packet domain then uses a priori knowledge of the target event and an estimate of noise features to selectively suppress the background noise. It is in fact a content-aware band-pass filter which can automatically pass the frequency bands that are more significant in the target than in the noise. Theoretical analysis shows that the proposed filtering method is capable of enhancing the target content while suppressing the background noise for signals with a low SNR. A condition to increase the probability of correct detection is also obtained. Experiments have been carried out on a large dataset of acoustic events that are contaminated by different types of environmental noise and white noise with varying SNRs. Results show that the proposed method is more robust and better adapted to noise than ordinary energy detectors, and it can work even with an SNR as low as -15 dB. A practical system for real time processing and multi-target detection is also proposed in this work

    The Dangers of Automated Gunshot Detection

    Get PDF

    Leveraging Wireless Broadband to Improve Police Land Mobile Radio Programming: Estimating the Resource Impact

    Get PDF
    Despite rapid growth in criminological studies of police technology, examinations of police land mobile radios are absent in the literature. This is troubling given the central role mobile radios serve in police operations and their significant management costs. The present study seeks to fill this gap by introducing the functionality of wireless broadband radio programming. Current practice requires a police officer to physically drive to a radio programming location to manage their mobile radio. Wireless programming remedies this burdensome reality, thereby saving officer time and cost. Geospatial analyses are used to estimate distance saved associated with wireless programming. We then conduct a number of calculations to determine time and cost savings related to the observed differences between existing and wireless radio programming within the context of the North Carolina State Highway Patrol. Results suggest wireless radio programming can save significant personnel and financial resources. Implications are discussed

    Urban lighting project for a small town: comparing citizens and authority benefits

    Get PDF
    The smart and resilient city evolves by slow procedures of mutation without radical changes, increasing the livability of its territory. The value of the city center in a Smart City can increase through urban lighting systems: its elements on the territory can collect and convey data to increase services to city users; the electrical system becomes the so-called Smart Grid. This paper presents a study of smart lighting for a small town, a touristic location inside a nature reserve on the Italian coast. Three different approaches have been proposed, from minimal to more invasive interventions, and their effect on the territory has been investigated. Based on street typology and its surroundings, the work analyzes the opportunity to introduce smart and useful services for the citizens starting from a retrofitting intervention. Smart city capabilities are examined, showing how it is possible to provide new services to the cities through ICT (Information and Communication Technology) without deep changes and simplifying the control of basic city functions. The results evidence an important impact on annual energy costs, suggesting smart grid planning not only for metropolis applications, but also in smaller towns, such as the examined one

    Hardware, Heartware, or Nightmare: Smart-City Technology and the Concomitant Erosion of Privacy

    Get PDF
    Smart city technology is being adopted in cities all around the world to simplify our lives, save us time, ease traffic, improve education, reduce energy usage and keep us safe. This article discusses smart city projects being utilized in crime prevention and investigations. Specifically, this article highlights examples of gunshot detection devices and surveillance that have led to improvements in public safety in Cape Town, Chicago and Atlanta, and discusses their impacts to privacy

    Hardware, Heartware, or Nightmare: Smart-City Technology and the Concomitant Erosion of Privacy

    Get PDF
    Smart city technology is being adopted in cities all around the world to simplify our lives, save us time, ease traffic, improve education, reduce energy usage and keep us safe. This article discusses smart city projects being utilized in crime prevention and investigations. Specifically, this article highlights examples of gunshot detection devices and surveillance that have led to improvements in public safety in Cape Town, Chicago and Atlanta, and discusses their impacts to privacy

    Rapid field identification of subjects involved in firearm-related crimes based on electroanalysis coupled with advanced chemometric data treatment

    Get PDF
    We demonstrate a novel system for the detection and discrimination of varying levels of exposure to gunshot residue from subjects in various control scenarios. Our aim is to address the key challenge of minimizing the false positive identification of individuals suspected of discharging a firearm. The chemometric treatment of voltammetric data from different controls using Canonical Variate Analysis (CVA) provides several distinct clusters for each scenario examined. Multiple samples were taken from subjects in controlled tests such as secondary contact with gunshot residue (GSR), loading a firearm, and postdischarge of a firearm. These controls were examined at both bare carbon and gold-modified screen-printed electrodes using different sampling methods: the 'swipe' method with integrated sampling and electroanalysis and a more traditional acid-assisted q-tip swabbing method. The electroanalytical fingerprint of each sample was examined using square-wave voltammetry; the resulting data were preprocessed with Fast Fourier Transform (FFT), followed by CVA treatment. High levels of discrimination were thus achieved in each case over 3 classes of samples (reflecting different levels of involvement), achieving maximum accuracy, sensitivity, and specificity values of 100% employing the leave-one-out validation method. Further validation with the 'jack-knife' technique was performed, and the resulting values were in good agreement with the former method. Additionally, samples from subjects in daily contact with relevant metallic constituents were analyzed to assess possible false positives. This system may serve as a potential method for a portable, field-deployable system aimed at rapidly identifying a subject who has loaded or discharged a firearm to verify involvement in a crime, hence providing law enforcement personnel with an invaluable forensic tool in the field

    An Impulse Detection Methodology and System with Emphasis on Weapon Fire Detection

    Get PDF
    This dissertation proposes a methodology for detecting impulse signatures. An algorithm with specific emphasis on weapon fire detection is proposed. Multiple systems in which the detection algorithm can operate, are proposed. In order for detection systems to be used in practical application, they must have high detection performance, minimizing false alarms, be cost effective, and utilize available hardware. Most applications require real time processing and increased range performance, and some applications require detection from mobile platforms. This dissertation intends to provide a methodology for impulse detection, demonstrated for the specific application case of weapon fire detection, that is intended for real world application, taking into account acceptable algorithm performance, feasible system design, and practical implementation. The proposed detection algorithm is implemented with multiple sensors, allowing spectral waveband versatility in system design. The proposed algorithm is also shown to operate at a variety of video frame rates, allowing for practical design using available common, commercial off the shelf hardware. Detection, false alarm, and classification performance are provided, given the use of different sensors and associated wavebands. The false alarms are further mitigated through use of an adaptive, multi-layer classification scheme, leading to potential on-the-move application. The algorithm is shown to work in real time. The proposed system, including algorithm and hardware, is provided. Additional systems are proposed which attempt to complement the strengths and alleviate the weaknesses of the hardware and algorithm. Systems are proposed to mitigate saturation clutter signals and increase detection of saturated targets through the use of position, navigation, and timing sensors, acoustic sensors, and imaging sensors. Furthermore, systems are provided which increase target detection and provide increased functionality, improving the cost effectiveness of the system. The resulting algorithm is shown to enable detection of weapon fire targets, while minimizing false alarms, for real-world, fieldable applications. The work presented demonstrates the complexity of detection algorithm and system design for practical applications in complex environments and also emphasizes the complex interactions and considerations when designing a practical system, where system design is the intersection of algorithm performance and design, hardware performance and design, and size, weight, power, cost, and processing
    • …
    corecore