875 research outputs found

    Improving disease gene prioritization using the semantic similarity of Gene Ontology terms

    Get PDF
    Motivation: Many hereditary human diseases are polygenic, resulting from sequence alterations in multiple genes. Genomic linkage and association studies are commonly performed for identifying disease-related genes. Such studies often yield lists of up to several hundred candidate genes, which have to be prioritized and validated further. Recent studies discovered that genes involved in phenotypically similar diseases are often functionally related on the molecular level

    Improving Disease Gene Prioritization by Comparing the Semantic Similarity of Phenotypes in Mice with Those of Human Diseases

    Get PDF
    Despite considerable progress in understanding the molecular origins of hereditary human diseases, the molecular basis of several thousand genetic diseases still remains unknown. High-throughput phenotype studies are underway to systematically assess the phenotype outcome of targeted mutations in model organisms. Thus, comparing the similarity between experimentally identified phenotypes and the phenotypes associated with human diseases can be used to suggest causal genes underlying a disease. In this manuscript, we present a method for disease gene prioritization based on comparing phenotypes of mouse models with those of human diseases. For this purpose, either human disease phenotypes are ā€œtranslatedā€ into a mouse-based representation (using the Mammalian Phenotype Ontology), or mouse phenotypes are ā€œtranslatedā€ into a human-based representation (using the Human Phenotype Ontology). We apply a measure of semantic similarity and rank experimentally identified phenotypes in mice with respect to their phenotypic similarity to human diseases. Our method is evaluated on manually curated and experimentally verified geneā€“disease associations for human and for mouse. We evaluate our approach using a Receiver Operating Characteristic (ROC) analysis and obtain an area under the ROC curve of up to . Furthermore, we are able to confirm previous results that the Vax1 gene is involved in Septo-Optic Dysplasia and suggest Gdf6 and Marcks as further potential candidates. Our method significantly outperforms previous phenotype-based approaches of prioritizing geneā€“disease associations. To enable the adaption of our method to the analysis of other phenotype data, our software and prioritization results are freely available under a BSD licence at http://code.google.com/p/phenomeblast/wiki/CAMP. Furthermore, our method has been integrated in PhenomeNET and the results can be explored using the PhenomeBrowser at http://phenomebrowser.net

    A visual and curatorial approach to clinical variant prioritization and disease gene discovery in genome-wide diagnostics

    Get PDF
    Background: Genome-wide data are increasingly important in the clinical evaluation of human disease. However, the large number of variants observed in individual patients challenges the efficiency and accuracy of diagnostic review. Recent work has shown that systematic integration of clinical phenotype data with genotype information can improve diagnostic workflows and prioritization of filtered rare variants. We have developed visually interactive, analytically transparent analysis software that leverages existing disease catalogs, such as the Online Mendelian Inheritance in Man database (OMIM) and the Human Phenotype Ontology (HPO), to integrate patient phenotype and variant data into ranked diagnostic alternatives. Methods: Our tool, ā€œOMIM Explorerā€ (http://www.omimexplorer.com), extends the biomedical application of semantic similarity methods beyond those reported in previous studies. The tool also provides a simple interface for translating free-text clinical notes into HPO terms, enabling clinical providers and geneticists to contribute phenotypes to the diagnostic process. The visual approach uses semantic similarity with multidimensional scaling to collapse high-dimensional phenotype and genotype data from an individual into a graphical format that contextualizes the patient within a low-dimensional disease map. The map proposes a differential diagnosis and algorithmically suggests potential alternatives for phenotype queriesā€”in essence, generating a computationally assisted differential diagnosis informed by the individualā€™s personal genome. Visual interactivity allows the user to filter and update variant rankings by interacting with intermediate results. The tool also implements an adaptive approach for disease gene discovery based on patient phenotypes. Results: We retrospectively analyzed pilot cohort data from the Baylor Miraca Genetics Laboratory, demonstrating performance of the tool and workflow in the re-analysis of clinical exomes. Our tool assigned to clinically reported variants a median rank of 2, placing causal variants in the top 1 % of filtered candidates across the 47 cohort cases with reported molecular diagnoses of exome variants in OMIM Morbidmap genes. Our tool outperformed Phen-Gen, eXtasy, PhenIX, PHIVE, and hiPHIVE in the prioritization of these clinically reported variants. Conclusions: Our integrative paradigm can improve efficiency and, potentially, the quality of genomic medicine by more effectively utilizing available phenotype information, catalog data, and genomic knowledge

    FunSimMat update: new features for exploring functional similarity

    Get PDF
    Quantifying the functional similarity of genes and their products based on Gene Ontology annotation is an important tool for diverse applications like the analysis of gene expression data, the prediction and validation of protein functions and interactions, and the prioritization of disease genes. The Functional Similarity Matrix (FunSimMat, http://www.funsimmat.de) is a comprehensive database providing various precomputed functional similarity values for proteins in UniProtKB and for protein families in Pfam and SMART. With this update, we significantly increase the coverage of FunSimMat by adding data from the Gene Ontology Annotation project as well as new functional similarity measures. The applicability of the database is greatly extended by the implementation of a new Gene Ontology-based method for disease gene prioritization. Two new visualization tools allow an interactive analysis of the functional relationships between proteins or protein families. This is enhanced further by the introduction of an automatically derived hierarchy of annotation classes. Additional changes include a revised user front-end and a new RESTlike interface for improving the user-friendliness and online accessibility of FunSimMat

    Contextual Analysis of Large-Scale Biomedical Associations for the Elucidation and Prioritization of Genes and their Roles in Complex Disease

    Get PDF
    Vast amounts of biomedical associations are easily accessible in public resources, spanning gene-disease associations, tissue-specific gene expression, gene function and pathway annotations, and many other data types. Despite this mass of data, information most relevant to the study of a particular disease remains loosely coupled and difficult to incorporate into ongoing research. Current public databases are difficult to navigate and do not interoperate well due to the plethora of interfaces and varying biomedical concept identifiers used. Because no coherent display of data within a specific problem domain is available, finding the latent relationships associated with a disease of interest is impractical. This research describes a method for extracting the contextual relationships embedded within associations relevant to a disease of interest. After applying the method to a small test data set, a large-scale integrated association network is constructed for application of a network propagation technique that helps uncover more distant latent relationships. Together these methods are adept at uncovering highly relevant relationships without any a priori knowledge of the disease of interest. The combined contextual search and relevance methods power a tool which makes pertinent biomedical associations easier to find, easier to assimilate into ongoing work, and more prominent than currently available databases. Increasing the accessibility of current information is an important component to understanding high-throughput experimental results and surviving the data deluge

    Constructing a gene semantic similarity network for the inference of disease genes

    Get PDF
    <p>Abstract</p> <p>Motivation</p> <p>The inference of genes that are truly associated with inherited human diseases from a set of candidates resulting from genetic linkage studies has been one of the most challenging tasks in human genetics. Although several computational approaches have been proposed to prioritize candidate genes relying on protein-protein interaction (PPI) networks, these methods can usually cover less than half of known human genes.</p> <p>Results</p> <p>We propose to rely on the biological process domain of the gene ontology to construct a gene semantic similarity network and then use the network to infer disease genes. We show that the constructed network covers about 50% more genes than a typical PPI network. By analyzing the gene semantic similarity network with the PPI network, we show that gene pairs tend to have higher semantic similarity scores if the corresponding proteins are closer to each other in the PPI network. By analyzing the gene semantic similarity network with a phenotype similarity network, we show that semantic similarity scores of genes associated with similar diseases are significantly different from those of genes selected at random, and that genes with higher semantic similarity scores tend to be associated with diseases with higher phenotype similarity scores. We further use the gene semantic similarity network with a random walk with restart model to infer disease genes. Through a series of large-scale leave-one-out cross-validation experiments, we show that the gene semantic similarity network can achieve not only higher coverage but also higher accuracy than the PPI network in the inference of disease genes.</p> <p>Contact</p> <p><email>[email protected]</email></p

    The Monarch Initiative in 2024: an analytic platform integrating phenotypes, genes and diseases across species.

    Get PDF
    Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch\u27s APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch\u27s data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch\u27s analytic tools by developing a customized plugin for OpenAI\u27s ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app

    Gene2DisCo : gene to disease using disease commonalities

    Get PDF
    OBJECTIVE: Finding the human genes co-causing complex diseases, also known as "disease-genes", is one of the emerging and challenging tasks in biomedicine. This process, termed gene prioritization (GP), is characterized by a scarcity of known disease-genes for most diseases, and by a vast amount of heterogeneous data, usually encoded into networks describing different types of functional relationships between genes. In addition, different diseases may share common profiles (e.g. genetic or therapeutic profiles), and exploiting disease commonalities may significantly enhance the performance of GP methods. This work aims to provide a systematic comparison of several disease similarity measures, and to embed disease similarities and heterogeneous data into a flexible framework for gene prioritization which specifically handles the lack of known disease-genes. METHODS: We present a novel network-based method, Gene2DisCo, based on generalized linear models (GLMs) to effectively prioritize genes by exploiting data regarding disease-genes, gene interaction networks and disease similarities. The scarcity of disease-genes is addressed by applying an efficient negative selection procedure, together with imbalance-aware GLMs. Gene2DisCo is a flexible framework, in the sense it is not dependent upon specific types of data, and/or upon specific disease ontologies. RESULTS: On a benchmark dataset composed of nine human networks and 708 medical subject headings (MeSH) diseases, Gene2DisCo largely outperformed the best benchmark algorithm, kernelized score functions, in terms of both area under the ROC curve (0.94 against 0.86) and precision at given recall levels (for recall levels from 0.1 to 1 with steps 0.1). Furthermore, we enriched and extended the benchmark data to the whole human genome and provided the top-ranked unannotated candidate genes even for MeSH disease terms without known annotations
    • ā€¦
    corecore