440 research outputs found

    Improving deep neural networks for LVCSR using rectified linear units and dropout

    Full text link

    Improvements to deep convolutional neural networks for LVCSR

    Full text link
    Deep Convolutional Neural Networks (CNNs) are more powerful than Deep Neural Networks (DNN), as they are able to better reduce spectral variation in the input signal. This has also been confirmed experimentally, with CNNs showing improvements in word error rate (WER) between 4-12% relative compared to DNNs across a variety of LVCSR tasks. In this paper, we describe different methods to further improve CNN performance. First, we conduct a deep analysis comparing limited weight sharing and full weight sharing with state-of-the-art features. Second, we apply various pooling strategies that have shown improvements in computer vision to an LVCSR speech task. Third, we introduce a method to effectively incorporate speaker adaptation, namely fMLLR, into log-mel features. Fourth, we introduce an effective strategy to use dropout during Hessian-free sequence training. We find that with these improvements, particularly with fMLLR and dropout, we are able to achieve an additional 2-3% relative improvement in WER on a 50-hour Broadcast News task over our previous best CNN baseline. On a larger 400-hour BN task, we find an additional 4-5% relative improvement over our previous best CNN baseline.Comment: 6 pages, 1 figur

    Voicing classification of visual speech using convolutional neural networks

    Get PDF
    The application of neural network and convolutional neural net- work (CNN) architectures is explored for the tasks of voicing classification (classifying frames as being either non-speech, unvoiced, or voiced) and voice activity detection (VAD) of vi- sual speech. Experiments are conducted for both speaker de- pendent and speaker independent scenarios. A Gaussian mixture model (GMM) baseline system is de- veloped using standard image-based two-dimensional discrete cosine transform (2D-DCT) visual speech features, achieving speaker dependent accuracies of 79% and 94%, for voicing classification and VAD respectively. Additionally, a single- layer neural network system trained using the same visual fea- tures achieves accuracies of 86 % and 97 %. A novel technique using convolutional neural networks for visual speech feature extraction and classification is presented. The voicing classifi- cation and VAD results using the system are further improved to 88 % and 98 % respectively. The speaker independent results show the neural network system to outperform both the GMM and CNN systems, achiev- ing accuracies of 63 % for voicing classification, and 79 % for voice activity detection

    Deep maxout networks for low-resource speech recognition

    Full text link
    • …
    corecore