18,113 research outputs found

    Bioinformatics tools for analysing viral genomic data

    Get PDF
    The field of viral genomics and bioinformatics is experiencing a strong resurgence due to high-throughput sequencing (HTS) technology, which enables the rapid and cost-effective sequencing and subsequent assembly of large numbers of viral genomes. In addition, the unprecedented power of HTS technologies has enabled the analysis of intra-host viral diversity and quasispecies dynamics in relation to important biological questions on viral transmission, vaccine resistance and host jumping. HTS also enables the rapid identification of both known and potentially new viruses from field and clinical samples, thus adding new tools to the fields of viral discovery and metagenomics. Bioinformatics has been central to the rise of HTS applications because new algorithms and software tools are continually needed to process and analyse the large, complex datasets generated in this rapidly evolving area. In this paper, the authors give a brief overview of the main bioinformatics tools available for viral genomic research, with a particular emphasis on HTS technologies and their main applications. They summarise the major steps in various HTS analyses, starting with quality control of raw reads and encompassing activities ranging from consensus and de novo genome assembly to variant calling and metagenomics, as well as RNA sequencing

    REPdenovo: Inferring De Novo Repeat Motifs from Short Sequence Reads.

    Get PDF
    Repeat elements are important components of eukaryotic genomes. One limitation in our understanding of repeat elements is that most analyses rely on reference genomes that are incomplete and often contain missing data in highly repetitive regions that are difficult to assemble. To overcome this problem we develop a new method, REPdenovo, which assembles repeat sequences directly from raw shotgun sequencing data. REPdenovo can construct various types of repeats that are highly repetitive and have low sequence divergence within copies. We show that REPdenovo is substantially better than existing methods both in terms of the number and the completeness of the repeat sequences that it recovers. The key advantage of REPdenovo is that it can reconstruct long repeats from sequence reads. We apply the method to human data and discover a number of potentially new repeats sequences that have been missed by previous repeat annotations. Many of these sequences are incorporated into various parasite genomes, possibly because the filtering process for host DNA involved in the sequencing of the parasite genomes failed to exclude the host derived repeat sequences. REPdenovo is a new powerful computational tool for annotating genomes and for addressing questions regarding the evolution of repeat families. The software tool, REPdenovo, is available for download at https://github.com/Reedwarbler/REPdenovo

    Polymorphism identification and improved genome annotation of Brassica rapa through Deep RNA sequencing.

    Get PDF
    The mapping and functional analysis of quantitative traits in Brassica rapa can be greatly improved with the availability of physically positioned, gene-based genetic markers and accurate genome annotation. In this study, deep transcriptome RNA sequencing (RNA-Seq) of Brassica rapa was undertaken with two objectives: SNP detection and improved transcriptome annotation. We performed SNP detection on two varieties that are parents of a mapping population to aid in development of a marker system for this population and subsequent development of high-resolution genetic map. An improved Brassica rapa transcriptome was constructed to detect novel transcripts and to improve the current genome annotation. This is useful for accurate mRNA abundance and detection of expression QTL (eQTLs) in mapping populations. Deep RNA-Seq of two Brassica rapa genotypes-R500 (var. trilocularis, Yellow Sarson) and IMB211 (a rapid cycling variety)-using eight different tissues (root, internode, leaf, petiole, apical meristem, floral meristem, silique, and seedling) grown across three different environments (growth chamber, greenhouse and field) and under two different treatments (simulated sun and simulated shade) generated 2.3 billion high-quality Illumina reads. A total of 330,995 SNPs were identified in transcribed regions between the two genotypes with an average frequency of one SNP in every 200 bases. The deep RNA-Seq reassembled Brassica rapa transcriptome identified 44,239 protein-coding genes. Compared with current gene models of B. rapa, we detected 3537 novel transcripts, 23,754 gene models had structural modifications, and 3655 annotated proteins changed. Gaps in the current genome assembly of B. rapa are highlighted by our identification of 780 unmapped transcripts. All the SNPs, annotations, and predicted transcripts can be viewed at http://phytonetworks.ucdavis.edu/

    Recovering complete and draft population genomes from metagenome datasets.

    Get PDF
    Assembly of metagenomic sequence data into microbial genomes is of fundamental value to improving our understanding of microbial ecology and metabolism by elucidating the functional potential of hard-to-culture microorganisms. Here, we provide a synthesis of available methods to bin metagenomic contigs into species-level groups and highlight how genetic diversity, sequencing depth, and coverage influence binning success. Despite the computational cost on application to deeply sequenced complex metagenomes (e.g., soil), covarying patterns of contig coverage across multiple datasets significantly improves the binning process. We also discuss and compare current genome validation methods and reveal how these methods tackle the problem of chimeric genome bins i.e., sequences from multiple species. Finally, we explore how population genome assembly can be used to uncover biogeographic trends and to characterize the effect of in situ functional constraints on the genome-wide evolution

    Methods to study splicing from high-throughput RNA Sequencing data

    Full text link
    The development of novel high-throughput sequencing (HTS) methods for RNA (RNA-Seq) has provided a very powerful mean to study splicing under multiple conditions at unprecedented depth. However, the complexity of the information to be analyzed has turned this into a challenging task. In the last few years, a plethora of tools have been developed, allowing researchers to process RNA-Seq data to study the expression of isoforms and splicing events, and their relative changes under different conditions. We provide an overview of the methods available to study splicing from short RNA-Seq data. We group the methods according to the different questions they address: 1) Assignment of the sequencing reads to their likely gene of origin. This is addressed by methods that map reads to the genome and/or to the available gene annotations. 2) Recovering the sequence of splicing events and isoforms. This is addressed by transcript reconstruction and de novo assembly methods. 3) Quantification of events and isoforms. Either after reconstructing transcripts or using an annotation, many methods estimate the expression level or the relative usage of isoforms and/or events. 4) Providing an isoform or event view of differential splicing or expression. These include methods that compare relative event/isoform abundance or isoform expression across two or more conditions. 5) Visualizing splicing regulation. Various tools facilitate the visualization of the RNA-Seq data in the context of alternative splicing. In this review, we do not describe the specific mathematical models behind each method. Our aim is rather to provide an overview that could serve as an entry point for users who need to decide on a suitable tool for a specific analysis. We also attempt to propose a classification of the tools according to the operations they do, to facilitate the comparison and choice of methods.Comment: 31 pages, 1 figure, 9 tables. Small corrections adde

    Parallel approach to sliding window sums

    Full text link
    Sliding window sums are widely used in bioinformatics applications, including sequence assembly, k-mer generation, hashing and compression. New vector algorithms which utilize the advanced vector extension (AVX) instructions available on modern processors, or the parallel compute units on GPUs and FPGAs, would provide a significant performance boost for the bioinformatics applications. We develop a generic vectorized sliding sum algorithm with speedup for window size w and number of processors P is O(P/w) for a generic sliding sum. For a sum with commutative operator the speedup is improved to O(P/log(w)). When applied to the genomic application of minimizer based k-mer table generation using AVX instructions, we obtain a speedup of over 5X.Comment: 10 pages, 5 figure

    De novo transcriptome sequencing and SSR markers development for Cedrela balansae C. DC., a native tree species of northwest Argentina

    Get PDF
    The endangered Cedrela balansae C.DC. (Meliaceae) is a high-value timber species with great potential for forest plantations that inhabits the tropical forests in Northwestern Argentina. Research on this species is scarce because of the limited genetic and genomic information available. Here, we explored the transcriptome of C. balansae using 454 GS FLX Titanium next-generation sequencing (NGS) technology. Following de novo assembling, we identified 27,111 non-redundant unigenes longer than 200 bp, and considered these transcripts for further downstream analysis. The functional annotation was performed searching the 27,111 unigenes against the NR-Protein and the Interproscan databases. This analysis revealed 26,977 genes with homology in at least one of the Database analyzed. Furthermore, 7,774 unigenes in 142 different active biological pathways in C. balansae were identified with the KEGG database. Moreover, after in silico analyses, we detected 2,663 simple sequence repeats (SSRs) markers. A subset of 70 SSRs related to important “stress tolerance” traits based on functional annotation evidence, were selected for wet PCR-validation in C. balansae and other Cedrela species inhabiting in northwest and northeast of Argentina (C. fissilis, C. saltensis and C. angustifolia). Successful transferability was between 77% and 93% and thanks to this study, 32 polymorphic functional SSRs for all analyzed Cedrela species are now available. The gene catalog and molecular markers obtained here represent a starting point for further research, which will assist genetic breeding programs in the Cedrela genus and will contribute to identifying key populations for its preservation.Fil: Torales, Susana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Rivarola, Maximo Lisandro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Gonzalez, Sergio. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Inza, María Virginia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Pomponio, María Florencia. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Fernández, Paula. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Acuña, Cintia Vanesa. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Zelener, Noga. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Fornes, Luis Fernando. Instituto Nacional de Tecnología Agropecuaria. Centro Regional Tucuman-Santiago del Estero; ArgentinaFil: Hopp, Horacio Esteban. Universidad de Belgrano. Facultad de Ciencias Exactas y Naturales; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; ArgentinaFil: Paniego, Norma Beatriz. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Marcucci Poltri, Susana Noemí. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentin
    corecore