8,878 research outputs found

    Mining Heterogeneous Multivariate Time-Series for Learning Meaningful Patterns: Application to Home Health Telecare

    Full text link
    For the last years, time-series mining has become a challenging issue for researchers. An important application lies in most monitoring purposes, which require analyzing large sets of time-series for learning usual patterns. Any deviation from this learned profile is then considered as an unexpected situation. Moreover, complex applications may involve the temporal study of several heterogeneous parameters. In that paper, we propose a method for mining heterogeneous multivariate time-series for learning meaningful patterns. The proposed approach allows for mixed time-series -- containing both pattern and non-pattern data -- such as for imprecise matches, outliers, stretching and global translating of patterns instances in time. We present the early results of our approach in the context of monitoring the health status of a person at home. The purpose is to build a behavioral profile of a person by analyzing the time variations of several quantitative or qualitative parameters recorded through a provision of sensors installed in the home

    A tensor based hyper-heuristic for nurse rostering

    Get PDF
    Nurse rostering is a well-known highly constrained scheduling problem requiring assignment of shifts to nurses satisfying a variety of constraints. Exact algorithms may fail to produce high quality solutions, hence (meta)heuristics are commonly preferred as solution methods which are often designed and tuned for specific (group of) problem instances. Hyper-heuristics have emerged as general search methodologies that mix and manage a predefined set of low level heuristics while solving computationally hard problems. In this study, we describe an online learning hyper-heuristic employing a data science technique which is capable of self-improvement via tensor analysis for nurse rostering. The proposed approach is evaluated on a well-known nurse rostering benchmark consisting of a diverse collection of instances obtained from different hospitals across the world. The empirical results indicate the success of the tensor-based hyper-heuristic, improving upon the best-known solutions for four of the instances
    corecore