1,886 research outputs found

    Energy-efficient and high-performance lock speculation hardware for embedded multicore systems

    Full text link
    Embedded systems are becoming increasingly common in everyday life and like their general-purpose counterparts, they have shifted towards shared memory multicore architectures. However, they are much more resource constrained, and as they often run on batteries, energy efficiency becomes critically important. In such systems, achieving high concurrency is a key demand for delivering satisfactory performance at low energy cost. In order to achieve this high concurrency, consistency across the shared memory hierarchy must be accomplished in a cost-effective manner in terms of performance, energy, and implementation complexity. In this article, we propose Embedded-Spec, a hardware solution for supporting transparent lock speculation, without the requirement for special supporting instructions. Using this approach, we evaluate the energy consumption and performance of a suite of benchmarks, exploring a range of contention management and retry policies. We conclude that for resource-constrained platforms, lock speculation can provide real benefits in terms of improved concurrency and energy efficiency, as long as the underlying hardware support is carefully configured.This work is supported in part by NSF under Grants CCF-0903384, CCF-0903295, CNS-1319495, and CNS-1319095 as well the Semiconductor Research Corporation under grant number 1983.001. (CCF-0903384 - NSF; CCF-0903295 - NSF; CNS-1319495 - NSF; CNS-1319095 - NSF; 1983.001 - Semiconductor Research Corporation

    A study of BIM collaboration requirements and available features in existing model collaboration systems

    Get PDF
    Established collaboration practices in the construction industry are document centric and are challenged by the introduction of Building Information Modelling (BIM). Document management collaboration systems (e.g. Extranets) have significantly improved the document collaboration in recent years; however their capabilities for model collaboration are limited and do not support the complex requirements of BIM collaboration. The construction industry is responding to this situation by adopting emerging model collaboration systems (MCS), such as model servers, with the ability to exploit and reuse information directly from the models to extend the current intra-disciplinary collaboration towards integrated multi-disciplinary collaboration on models. The functions of existing MCSs have evolved from the manufacturing industry and there is no concrete study on how these functions correspond to the requirements of the construction industry, especially with BIM requirements. This research has conducted focus group sessions with major industry disciplines to explore the user requirements for BIM collaboration. The research results have been used to categorise and express the features of existing MCS which are then analysed in selected MCS from a user’s perspective. The potential of MCS and the match or gap in user requirements and available model collaboration features is discussed. This study concludes that model collaborative solutions for construction industry users are available in different capacities; however a comprehensive custom built solution is yet to be realized. The research results are useful for construction industry professionals, software developers and researchers involved in exploring collaborative solutions for the construction industry

    Proceedings of the ECSCW'95 Workshop on the Role of Version Control in CSCW Applications

    Full text link
    The workshop entitled "The Role of Version Control in Computer Supported Cooperative Work Applications" was held on September 10, 1995 in Stockholm, Sweden in conjunction with the ECSCW'95 conference. Version control, the ability to manage relationships between successive instances of artifacts, organize those instances into meaningful structures, and support navigation and other operations on those structures, is an important problem in CSCW applications. It has long been recognized as a critical issue for inherently cooperative tasks such as software engineering, technical documentation, and authoring. The primary challenge for versioning in these areas is to support opportunistic, open-ended design processes requiring the preservation of historical perspectives in the design process, the reuse of previous designs, and the exploitation of alternative designs. The primary goal of this workshop was to bring together a diverse group of individuals interested in examining the role of versioning in Computer Supported Cooperative Work. Participation was encouraged from members of the research community currently investigating the versioning process in CSCW as well as application designers and developers who are familiar with the real-world requirements for versioning in CSCW. Both groups were represented at the workshop resulting in an exchange of ideas and information that helped to familiarize developers with the most recent research results in the area, and to provide researchers with an updated view of the needs and challenges faced by application developers. In preparing for this workshop, the organizers were able to build upon the results of their previous one entitled "The Workshop on Versioning in Hypertext" held in conjunction with the ECHT'94 conference. The following section of this report contains a summary in which the workshop organizers report the major results of the workshop. The summary is followed by a section that contains the position papers that were accepted to the workshop. The position papers provide more detailed information describing recent research efforts of the workshop participants as well as current challenges that are being encountered in the development of CSCW applications. A list of workshop participants is provided at the end of the report. The organizers would like to thank all of the participants for their contributions which were, of course, vital to the success of the workshop. We would also like to thank the ECSCW'95 conference organizers for providing a forum in which this workshop was possible

    A requirements engineering framework for integrated systems development for the construction industry

    Get PDF
    Computer Integrated Construction (CIC) systems are computer environments through which collaborative working can be undertaken. Although many CIC systems have been developed to demonstrate the communication and collaboration within the construction projects, the uptake of CICs by the industry is still inadequate. This is mainly due to the fact that research methodologies of the CIC development projects are incomplete to bridge the technology transfer gap. Therefore, defining comprehensive methodologies for the development of these systems and their effective implementation on real construction projects is vital. Requirements Engineering (RE) can contribute to the effective uptake of these systems because it drives the systems development for the targeted audience. This paper proposes a requirements engineering approach for industry driven CIC systems development. While some CIC systems are investigated to build a broad and deep contextual knowledge in the area, the EU funded research project, DIVERCITY (Distributed Virtual Workspace for Enhancing Communication within the Construction Industry), is analysed as the main case study project because its requirements engineering approach has the potential to determine a framework for the adaptation of requirements engineering in order to contribute towards the uptake of CIC systems

    Modeling Business Process Variability

    Get PDF
    This master thesis presents research findings on business process variability modeling. Its main goal is to analyze inherent problems of business process variability and solve them simply, innovatively and effectively. To achieve this goal, process variability is defined by analyzing scientific literature, its main problems identified and is illustrated using a healthcare running example: process variability is classified into process variability within the domain space and over time. These two forms of process variability respectively lead to process variability modeling and process model evolution problems. After defining the main problems inherent to process variability, the focus of this research project is defined: solving process variability modeling problems. First current business process modeling languages are evaluated to assess the effectiveness of their respective modeling concepts when modeling process variability, using a newly created set of evaluation criteria and the healthcare running example. The following business process modeling languages are evaluated: Event driven process chains (EPC), the Business Process Modeling Notation (BPMN) and Configurable EPC (C-EPC). Business process variability modeling and Software product line engineering have similar problems. Therefore the variability modeling concepts developed by software product line engineering are analyzed. Feature diagrams and software configuration management are the main variability management concepts provided by software product line engineering. To apply these variability management concepts to model process variability meant combining them with existing business modeling languages. Riebisch feature diagrams are combined with C-EPC to form Feature-EPC. Applying software configuration management, meant merging Change Oriented Versioning with basic EPC to create COV-EPC, and merging the Proteus Configuration Language with basic EPC to design PCL-EPC. Finally these newly created business process modeling languages are also evaluated using the newly designed evaluation criteria and the healthcare running example. EPC or BPMN are not suited to model business process variability within the domain space. C-EPC provide explicit means to model business process variability, however the process models tend to get big very fast. Furthermore the syntax, the contextual constraints and the semantics of the configuration requirements and guidelines used to configure the C-EPC process models are unclear. Feature-EPC improve C-EPC with domain modeling capability and clearly defined configuration rules: their syntax, contextual constraints and semantics have been clearly defined using a context free grammar in Backus-Naur form. Furthermore, consistent combinations of features and configuration rules are ensured using respectively constraints and a conflict resolution algorithm. However, Feature-EPC and C-EPC suffer from the same weakness: large configurable process models. In COV-EPC and PCL-EPC the problem of large configurable process models is solved. COV-EPC ensures consistent combinations of options and configuration rules using respectively validities and a conflict resolution algorithm. PCL-EPC guarantees consistent combinations of process fragments by means of a PCL specification

    Mind the Gap: From Desktop to App

    Get PDF
    In this article we present a new mobile game, edugames4all MicrobeQuest!, that covers core learning objectives from the European curriculum on microbe transmission, food and hand hygiene, and responsible antibiotic use. The game is aimed at 9 to 12 year olds and it is based on the desktop version of the edugames4all platform games. We discuss the challenges and lessons learned transitioning from a desktop based game to a mobile app. We also present the seamless evaluation obtained by integrating the assessment of educa- tional impact of the game into the game mechanics

    MGit: A Model Versioning and Management System

    Full text link
    Models derived from other models are extremely common in machine learning (ML) today. For example, transfer learning is used to create task-specific models from "pre-trained" models through finetuning. This has led to an ecosystem where models are related to each other, sharing structure and often even parameter values. However, it is hard to manage these model derivatives: the storage overhead of storing all derived models quickly becomes onerous, prompting users to get rid of intermediate models that might be useful for further analysis. Additionally, undesired behaviors in models are hard to track down (e.g., is a bug inherited from an upstream model?). In this paper, we propose a model versioning and management system called MGit that makes it easier to store, test, update, and collaborate on model derivatives. MGit introduces a lineage graph that records provenance and versioning information between models, optimizations to efficiently store model parameters, as well as abstractions over this lineage graph that facilitate relevant testing, updating and collaboration functionality. MGit is able to reduce the lineage graph's storage footprint by up to 7x and automatically update downstream models in response to updates to upstream models
    • …
    corecore