2,975 research outputs found

    DeepConv-DTI: Prediction of drug-target interactions via deep learning with convolution on protein sequences

    Full text link
    Identification of drug-target interactions (DTIs) plays a key role in drug discovery. The high cost and labor-intensive nature of in vitro and in vivo experiments have highlighted the importance of in silico-based DTI prediction approaches. In several computational models, conventional protein descriptors are shown to be not informative enough to predict accurate DTIs. Thus, in this study, we employ a convolutional neural network (CNN) on raw protein sequences to capture local residue patterns participating in DTIs. With CNN on protein sequences, our model performs better than previous protein descriptor-based models. In addition, our model performs better than the previous deep learning model for massive prediction of DTIs. By examining the pooled convolution results, we found that our model can detect binding sites of proteins for DTIs. In conclusion, our prediction model for detecting local residue patterns of target proteins successfully enriches the protein features of a raw protein sequence, yielding better prediction results than previous approaches.Comment: 26 pages, 7 figure

    Improving Compound–Protein Interaction Prediction by Self-Training with Augmenting Negative Samples

    Get PDF
    Identifying compound-protein interactions (CPIs) is crucial for drug discovery. Since experimentally validating CPIs is often time-consuming and costly, computational approaches are expected to facilitate the process. Rapid growths of available CPI databases have accelerated the development of many machine-learning methods for CPI predictions. However, their performance, particularly their generalizability against external data, often suffers from a data imbalance attributed to the lack of experimentally validated inactive (negative) samples. In this study, we developed a self-training method for augmenting both credible and informative negative samples to improve the performance of models impaired by data imbalances. The constructed model demonstrated higher performance than those constructed with other conventional methods for solving data imbalances, and the improvement was prominent for external datasets. Moreover, examination of the prediction score thresholds for pseudo-labeling during self-training revealed that augmenting the samples with ambiguous prediction scores is beneficial for constructing a model with high generalizability. The present study provides guidelines for improving CPI predictions on real-world data, thus facilitating drug discovery

    Algorithm for Predicting Compound Protein Interaction Using Tanimoto Similarity and Klekota-roth Fingerprint

    Get PDF
    This research aimed to develop a method for predicting interaction between chemical compounds contained in herbs and proteins related to particular disease. The algorithm of this method is based on binary local models algorithm, with protein similarity section is omitted. Klekota-Roth fingerprint is used for the compound's representation. In the development process of the method, three similarity functions are compared: Tanimoto, Cosine, and Dice. Youden’s index is used to evaluate optimum threshold value. The result showed that Tanimoto similarity function yielded higher similarity values and higher AUC value than those of the other two functions. Moreover, the optimum threshold value obtained is 0.65. Therefore, Tanimoto similarity function and threshold value 0.65 are selected to be used on the prediction method. The average evaluation accuracy of the developed algorithm is only about 50%. The low accuracy value is allegedly caused by the only use of compound similarity on the prediction method, without including the protein similarity

    Interpretable bilinear attention network with domain adaptation improves drug-target prediction

    Full text link
    Predicting drug-target interaction is key for drug discovery. Recent deep learning-based methods show promising performance but two challenges remain: (i) how to explicitly model and learn local interactions between drugs and targets for better prediction and interpretation; (ii) how to generalize prediction performance on novel drug-target pairs from different distribution. In this work, we propose DrugBAN, a deep bilinear attention network (BAN) framework with domain adaptation to explicitly learn pair-wise local interactions between drugs and targets, and adapt on out-of-distribution data. DrugBAN works on drug molecular graphs and target protein sequences to perform prediction, with conditional domain adversarial learning to align learned interaction representations across different distributions for better generalization on novel drug-target pairs. Experiments on three benchmark datasets under both in-domain and cross-domain settings show that DrugBAN achieves the best overall performance against five state-of-the-art baselines. Moreover, visualizing the learned bilinear attention map provides interpretable insights from prediction results.Comment: 16 pages, 6 figure

    Algebraic shortcuts for leave-one-out cross-validation in supervised network inference

    Get PDF
    Supervised machine learning techniques have traditionally been very successful at reconstructing biological networks, such as protein-ligand interaction, protein-protein interaction and gene regulatory networks. Many supervised techniques for network prediction use linear models on a possibly nonlinear pairwise feature representation of edges. Recently, much emphasis has been placed on the correct evaluation of such supervised models. It is vital to distinguish between using a model to either predict new interactions in a given network or to predict interactions for a new vertex not present in the original network. This distinction matters because (i) the performance might dramatically differ between the prediction settings and (ii) tuning the model hyperparameters to obtain the best possible model depends on the setting of interest. Specific cross-validation schemes need to be used to assess the performance in such different prediction settings. In this work we discuss a state-of-the-art kernel-based network inference technique called two-step kernel ridge regression. We show that this regression model can be trained efficiently, with a time complexity scaling with the number of vertices rather than the number of edges. Furthermore, this framework leads to a series of cross-validation shortcuts that allow one to rapidly estimate the model performance for any relevant network prediction setting. This allows computational biologists to fully assess the capabilities of their models

    Pretata: predicting TATA binding proteins with novel features and dimensionality reduction strategy

    Full text link
    Background: It is necessary and essential to discovery protein function from the novel primary sequences. Wet lab experimental procedures are not only time-consuming, but also costly, so predicting protein structure and function reliably based only on amino acid sequence has significant value. TATA-binding protein (TBP) is a kind of DNA binding protein, which plays a key role in the transcription regulation. Our study proposed an automatic approach for identifying TATA-binding proteins efficiently, accurately, and conveniently. This method would guide for the special protein identification with computational intelligence strategies. Results: Firstly, we proposed novel fingerprint features for TBP based on pseudo amino acid composition, physicochemical properties, and secondary structure. Secondly, hierarchical features dimensionality reduction strategies were employed to improve the performance furthermore. Currently, Pretata achieves 92.92% TATA- binding protein prediction accuracy, which is better than all other existing methods. Conclusions: The experiments demonstrate that our method could greatly improve the prediction accuracy and speed, thus allowing large-scale NGS data prediction to be practical. A web server is developed to facilitate the other researchers, which can be accessed at http://server.malab.cn/preTata/

    Biological Applications of Knowledge Graph Embedding Models

    Get PDF
    Complex biological systems are traditionally modelled as graphs of interconnected biological entities. These graphs, i.e. biological knowledge graphs, are then processed using graph exploratory approaches to perform different types of analytical and predictive tasks. Despite the high predictive accuracy of these approaches, they have limited scalability due to their dependency on time-consuming path exploratory procedures. In recent years, owing to the rapid advances of computational technologies, new approaches for modelling graphs and mining them with high accuracy and scalability have emerged. These approaches, i.e. knowledge graph embedding (KGE) models, operate by learning low-rank vector representations of graph nodes and edges that preserve the graph s inherent structure. These approaches were used to analyse knowledge graphs from different domains where they showed superior performance and accuracy compared to previous graph exploratory approaches. In this work, we study this class of models in the context of biological knowledge graphs and their different applications. We then show how KGE models can be a natural fit for representing complex biological knowledge modelled as graphs. We also discuss their predictive and analytical capabilities in different biology applications. In this regard, we present two example case studies that demonstrate the capabilities of KGE models: prediction of drug target interactions and polypharmacy side effects. Finally, we analyse different practical considerations for KGEs, and we discuss possible opportunities and challenges related to adopting them for modelling biological systems.The work presented in this paper was supported by the CLARIFY project that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 875160, and by Insight research centre supported by the Science Foundation Ireland (SFI) grant (12/RC/2289_2)peer-reviewed2021-02-1

    Investigation of the binding between olfactory receptors and odorant molecules in C. elegans organism

    Get PDF
    Abstract The molecular mechanisms regulating the complex sensory system that underlies olfaction are still not completely understood. The compounds formed from the interaction of Olfactory Receptors (ORs) with volatile molecules play a crucial role in producing the sense of olfaction. Therefore, it is necessary to investigate the binding mechanisms between these receptors and small ligands. In this work, we focus our attention on C.elegans, this is a particularly suitable model organism because it is characterized by a nervous system composed of only 302 neurons. To study olfaction in C.elegans, we select 21 ORs from its olfactory neurons, and present a pipeline, consisting of several computational methods, with the aim of proposing a set of possible candidates for binding the selected C.elegans ORs. This pipeline introduces an approach based on the selection of templates, and threading, that takes advantage of the structural redundancy among membrane receptors. This procedure is widely replicable because it is based on algorithms that are publicly available and are freely hosted on institutional servers
    corecore