189 research outputs found

    MeasureIt-ARCH: A Tool for Facilitating Architectural Design in the Open Source Software Blender

    Get PDF
    This thesis discusses the design and synthesis of MeasureIt-ARCH, a GNU GPL licensed software add-on developed by the author in order to add functionality to the Open Source 3D modeling software Blender that facilitates the creation of architectural drawings. MeasureIt-ARCH adds to Blender simple tools to dimension and annotate 3D models, as well as basic support for the definition and drawing of line work. These tools for the creation of dimensions, annotations and line work are designed to be used in tandem with Blender's existing modelling and rendering tool set. While the drawings that MeasureIt-ARCH produces are fundamentally conventional, as are the majority of the techniques that MeasureIt-ARCH employs to create them, MeasureIt-ARCH does provide two simple and relatively novel methods in its drawing systems. MeasureIt-ARCH provides a new method for the placement of dimension elements in 3D space that draws on the dimension's three dimensional context and surrounding geometry order to determine a placement that optimizes legibility. This dimension placement method does not depend on a 2D work plane, a convention that is common in industry standard Computer Aided Design software. MeasureIt-ARCH also implements a new approach for drawing silhouette lines that operates by transforming the silhouetted models geometry in 4D 'Clip Space'. The hope of this work is that MeasureIt-ARCH might be a small step towards creating an Open Source design pipeline for Architects. A step towards creating architectural drawings that can be shared, read, and modified by anyone, within a platform that is itself free to be changed and improved. The creation of MeasureIt-ARCH is motivated by two goals. First, the work aims to create a basic functioning Open Source platform for the creation of architectural drawings within Blender that is publicly and freely available for use. Second, MeasureIt-ARCH's development served as an opportunity to engage in an interdisciplinary act of craft, providing the author an opportunity to explore the act of digital tool making and gain a basic competency in this intersection between Architecture and Computer Science. To achieve these goals, MeasureIt-ARCH's development draws on references from the history of line drawing and dimensioning within Architecture and Computer Science. On the Architectural side, we make use of the history of architectural drawing and dimensioning conventions as described by Mario Carpo, Alberto Pérez Gómez and others, as well as more contemporary frameworks for the classification of architectural software, such as Mark Bew and Mervyn Richard's BIM Levels framework, in order to help determine the scope of MeasureIt-ARCH's feature set. When crafting MeasureIt-ARCH, precedent works from the field of Computer Science that implement methods for producing line drawings from 3D models helped inform the author’s approach to line drawing. In particular this work draws on the overview of line drawing methods produced by Bénard Pierre and Aaron Hertzmann, Arthur Appel's method for line drawing using 'Quantitative Invisibility', the techniques employed in the Freestyle line drawing system created by Grabli et al. as well as other to help inform MeasureIt-ARCH's simple drawing tools. Beyond discussing MeasureIt-ARCH's development and its motivations, this thesis also provides three small speculative discussions about the implications that an Open Source design tool might have on the architectural profession. We investigate MeasureIt-ARCH's use for small scale architectural projects in a practical setting, using it's tool set to produce conceptual design and renovation drawings for cottages at the Lodge at Pine Cove. We provide a demonstration of how MeasureIt-ARCH and Blender can integrate with external systems and other Blender add-ons to produce a proof of concept, dynamic data visualization of the Noosphere installation at the Futurium center in Berlin by the Living Architecture Systems Group. Finally, we discuss the tool's potential to facilitate greater engagement with the Open Source Architecture (OSArc) movement by illustrating a case study of the work done by Alastair Parvin and Clayton Prest on the WikiHouse project, and by highlighting the challenges that face OSArc projects as they try to produce Open Source Architecture without an Open Source design software

    An ergonomics design knowledge based expert system

    Get PDF
    The research scope and objectives are to investigate the use of 'geometric reasoning' using the knowledge based techniques established for expert systems. An Expert System is integrated within the SAMMIE (System for Aiding Man-Machine Interaction Evaluation) computer man modelling system and used for vehicle interior design. Vehicle design objectives are related to a rule base determined from national and international standards and legislation. Malaysia is now progressing towards becoming an Industrialised Country by the year 2020. In mid 1985 the Malaysian Motor Industry produced the Proton Saga which has since been exported to other countries. Although the Standards and Industrial Research Institute of Malaysia (SIRIM) is playing an important role in design activities and provision of standardisation information, some standards and legislation for vehicle interior design are not easily available. There is an important and urgent need for standards and legislation to facilitate vehicle design within Malaysia and Internationally. A literature survey on the relevance of ergonomics design to standards and legislation for vehicle interior design is presented. Knowledge and expertise required for the knowledge base were elicited from various resources; extracted from journals, research publications and standards reports from various international organisations. The SAMMIE system was used to develop a prototype design model for the vehicle interior and the KES expert systems hell was selected to develop the Ergonomics Design Knowledge Based Expert System (EDKBES). EDKBES has a modular structure for ease of software readability, editing and testing, and to readily facilitate further development. The knowledge base is divided into several sections related to the hierarchical structure of vehicle interior design

    Visualization of graphs and trees for software analysis

    Get PDF
    A software architecture is an abstraction of a software system, which is indispensable for many software engineering tasks. Unfortunately, in many cases information pertaining to the software architecture is not available, outdated, or inappropriate for the task at hand. The RECONSTRUCTOR project focuses on software architecture reconstruction, i.e., obtaining architectural information from an existing system. Our research, which is part of RECONSTRUCTOR, focuses on interactive visualization and tries to answer the following question: How can users be enabled to understand the large amounts of information relevant for program understanding using visual representations? To answer this question, we have iteratively developed a number of techniques for visualizing software systems. A large number of these cases consists of hierarchically organized data, combined with adjacency relations. Examples are function calls within a hierarchically organized software system and correspondence relations between two different versions of a hierarchically organized software system. Hierarchical Edge Bundles (HEBs) are used to visualize adjacency relations in hierarchically organized data, such as the aforementioned function calls within a software system. HEBs significantly reduce visual clutter by visually bundling relations together. Massive Sequence Views (MSVs) are used in conjunction with HEBs to enable analysis of sequences of relations, such as function-call traces. HEBs are furthermore used to visually compare hierarchically organized data, e.g., two different versions of a software system. HEBs visually emphasize splits, joins, and relocations of subhierarchies and provide for interactive selection of sets of relations. Since HEBs require a hierarchy to perform the bundling, we present Force-Directed Edge Bundles (FDEBs) as an alternative to visually bundle relations together in the absence of a hierarchical component. FDEBs use a self-organizing approach to bundling in which edges are modeled as flexible springs that can attract each other. As a result, visual clutter is reduced and high-level edge patterns are better visible. Finally, in all these methods, a clear depiction of the direction of edges is important. We have therefore performed a separate study in which we evaluated ten representations (including the standard arrow) for depicting directed edges in a controlled user study

    Coherent Label Placement for 3D Exploded View

    Get PDF
    The use of labels in images represents the basics of visual object presentations that we are all familiar with. However, few know that automatic label placement in 2D or 3D space belongs to the set of NP-complete and NP-hard problems. While state-of-the-art algorithms such as hedgehog labeling already produce incredible coherent results in real-time interactive applications, they were only designed for static and non-deformable objects. Therefore, their performance decreases when combined with the dynamic and model-deforming the 3D model presentation techniques such as exploded diagrams a.k.a. exploded views, which present the structure of 3D model by "exploding" their parts. We propose an extension of hedgehog labeling to work with exploded views by introducing clustering of model exploded parts and their labels. Clustered hedgehog labeling uses the explosion information to separate 3D space into sections belonging to individual label clusters, each running hedgehog labeling instances solely on the cluster members. The evaluation of the proposed solution and its Textplosion implementation was done by running a usability study enhanced with eye-tracking on a group of volunteers, where improvement of the original algorithm was detected. The need for 3D test models for experimentation resulted in the creation of a 3D Labeling dataset to be shared with the community in an attempt to fill the void of a missing standardized dataset for 3D labeling algorithms

    The Localisation of Video Games

    Get PDF
    The present thesis is a study of the translation of video games with a particular emphasis on the Spanish-English language pair, although other languages are brought into play when they offer a clearer illustration of a particular point in the discussion. On the one hand, it offers a descriptive analysis of the video game industry understood as a global phenomenon in entertainment, with the aim of understanding the norms governing present game development and publishing practices. On the other hand, it discusses particular translation issues that seem to be unique to these entertainment products due to their multichannel and polysemiotic nature, in which verbal and nonverbal signs are intimately interconnected in search of maximum game interactivity. Although this research positions itself within the theoretical framework of Descriptive Translation Studies, it actually goes beyond the mere accounting of current processes to propose changes whenever professional practice seems to be unable to rid itself of old unsatisfactory habits. Of a multidisciplinary nature, the present thesis is greatly informed by various areas of knowledge such as audiovisual translation, software localisation, computer assisted translation and translation memory tools, comparative literature, and video game production and marketing, amongst others. The conclusions are an initial breakthrough in terms of research into this new area, challenging some of the basic tenets current in translation studies thanks to its multidisciplinary approach, and its solid grounding on current game localisation industry practice. The results can be useful in order to boost professional quality and to promote the training of translators in video game localisation in higher education centres.Open Acces

    Advances in Optofluidics

    Get PDF
    Optofluidics a niche research field that integrates optics with microfluidics. It started with elegant demonstrations of the passive interaction of light and liquid media such as liquid waveguides and liquid tunable lenses. Recently, the optofluidics continues the advance in liquid-based optical devices/systems. In addition, it has expanded rapidly into many other fields that involve lightwave (or photon) and liquid media. This Special Issue invites review articles (only review articles) that update the latest progress of the optofluidics in various aspects, such as new functional devices, new integrated systems, new fabrication techniques, new applications, etc. It covers, but is not limited to, topics such as micro-optics in liquid media, optofluidic sensors, integrated micro-optical systems, displays, optofluidics-on-fibers, optofluidic manipulation, energy and environmental applciations, and so on

    Aspects of Synthetic Vision Display Systems and the Best Practices of the NASA's SVS Project

    Get PDF
    NASA s Synthetic Vision Systems (SVS) Project conducted research aimed at eliminating visibility-induced errors and low visibility conditions as causal factors in civil aircraft accidents while enabling the operational benefits of clear day flight operations regardless of actual outside visibility. SVS takes advantage of many enabling technologies to achieve this capability including, for example, the Global Positioning System (GPS), data links, radar, imaging sensors, geospatial databases, advanced display media and three dimensional video graphics processors. Integration of these technologies to achieve the SVS concept provides pilots with high-integrity information that improves situational awareness with respect to terrain, obstacles, traffic, and flight path. This paper attempts to emphasize the system aspects of SVS - true systems, rather than just terrain on a flight display - and to document from an historical viewpoint many of the best practices that evolved during the SVS Project from the perspective of some of the NASA researchers most heavily involved in its execution. The Integrated SVS Concepts are envisagements of what production-grade Synthetic Vision systems might, or perhaps should, be in order to provide the desired functional capabilities that eliminate low visibility as a causal factor to accidents and enable clear-day operational benefits regardless of visibility conditions

    Doctor of Philosophy

    Get PDF
    dissertationDataflow pipeline models are widely used in visualization systems. Despite recent advancements in parallel architecture, most systems still support only a single CPU or a small collection of CPUs such as a SMP workstation. Even for systems that are specifically tuned towards parallel visualization, their execution models only provide support for data-parallelism while ignoring taskparallelism and pipeline-parallelism. With the recent popularization of machines equipped with multicore CPUs and multi-GPU units, these visualization systems are undoubtedly falling further behind in reaching maximum efficiency. On the other hand, there exist several libraries that can schedule program executions on multiple CPUs and/or multiple GPUs. However, due to differences in executing a task graph and a pipeline along with their APIs being considerably low-level, it still remains a challenge to integrate these run-time libraries into current visualization systems. Thus, there is a need for a redesigned dataflow architecture to fully support and exploit the power of highly parallel machines in large-scale visualization. The new design must be able to schedule executions on heterogeneous platforms while at the same time supporting arbitrarily large datasets through the use of streaming data structures. The primary goal of this dissertation work is to develop a parallel dataflow architecture for streaming large-scale visualizations. The framework includes supports for platforms ranging from multicore processors to clusters consisting of thousands CPUs and GPUs. We achieve this in our system by introducing the notion of Virtual Processing Elements and Task-Oriented Modules along with a highly customizable scheduler that controls the assignment of tasks to elements dynamically. This creates an intuitive way to maintain multiple CPU/GPU kernels yet still provide coherency and synchronization across module executions. We have implemented these techniques into HyperFlow which is made of an API with all basic dataflow constructs described in the dissertation, and a distributed run-time library that can be used to deploy those pipelines on multicore, multi-GPU and cluster-based platforms

    Crosstalk in stereoscopic displays

    Get PDF
    Crosstalk is an important image quality attribute of stereoscopic 3D displays. The research presented in this thesis examines the presence, mechanisms, simulation, and reduction of crosstalk for a selection of stereoscopic display technologies. High levels of crosstalk degrade the perceived quality of stereoscopic displays hence it is important to minimise crosstalk. This thesis provides new insights which are critical to a detailed understanding of crosstalk and consequently to the development of effective crosstalk reduction techniques
    • …
    corecore