11,375 research outputs found

    When less is more: Robot swarms adapt better to changes with constrained communication

    Get PDF
    To effectively perform collective monitoring of dynamic environments, a robot swarm needs to adapt to changes by processing the latest information and discarding outdated beliefs. We show that in a swarm composed of robots relying on local sensing, adaptation is better achieved if the robots have a shorter rather than longer communication range. This result is in contrast with the widespread belief that more communication links always improve the information exchange on a network. We tasked robots with reaching agreement on the best option currently available in their operating environment. We propose a variety of behaviors composed of reactive rules to process environmental and social information. Our study focuses on simple behaviors based on the voter model—a well-known minimal protocol to regulate social interactions—that can be implemented in minimalistic machines. Although different from each other, all behaviors confirm the general result: The ability of the swarm to adapt improves when robots have fewer communication links. The average number of links per robot reduces when the individual communication range or the robot density decreases. The analysis of the swarm dynamics via mean-field models suggests that our results generalize to other systems based on the voter model. Model predictions are confirmed by results of multiagent simulations and experiments with 50 Kilobot robots. Limiting the communication to a local neighborhood is a cheap decentralized solution to allow robot swarms to adapt to previously unknown information that is locally observed by a minority of the robots

    Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis

    Full text link
    Collective cell responses to exogenous cues depend on cell-cell interactions. In principle, these can result in enhanced sensitivity to weak and noisy stimuli. However, this has not yet been shown experimentally, and, little is known about how multicellular signal processing modulates single cell sensitivity to extracellular signaling inputs, including those guiding complex changes in the tissue form and function. Here we explored if cell-cell communication can enhance the ability of cell ensembles to sense and respond to weak gradients of chemotactic cues. Using a combination of experiments with mammary epithelial cells and mathematical modeling, we find that multicellular sensing enables detection of and response to shallow Epidermal Growth Factor (EGF) gradients that are undetectable by single cells. However, the advantage of this type of gradient sensing is limited by the noisiness of the signaling relay, necessary to integrate spatially distributed ligand concentration information. We calculate the fundamental sensory limits imposed by this communication noise and combine them with the experimental data to estimate the effective size of multicellular sensory groups involved in gradient sensing. Functional experiments strongly implicated intercellular communication through gap junctions and calcium release from intracellular stores as mediators of collective gradient sensing. The resulting integrative analysis provides a framework for understanding the advantages and limitations of sensory information processing by relays of chemically coupled cells.Comment: paper + supporting information, total 35 pages, 15 figure

    Simple individual behavioural rules for improving the collective behaviours of robot swarms

    Get PDF
    Swarm robotics is an ongoing area of research that is expected to revolutionise various real-world domains such as agriculture and space exploration. Swarm robotics systems are composed of a large number of simple and autonomous robots. Each robot locally interacts with other robots and with the environment following a set of behavioural rules. These individual interactions enable the swarm to exhibit interesting collective behaviours and to accomplish specific tasks. The main challenge in designing robot swarms is to determine the behavioural rules that each robot should follow so that the swarm as a whole can perform the desired task. The performance of robot swarms in a given task depends on the designer's choice of appropriate individual behavioural rules. In this thesis, we investigate simple individual behavioural rules for improving the performance of robot swarms in two major tasks. Using simple behavioural rules makes the designed solutions possibly usable with simpler platforms such as micro- and nanorobots. The first task we address is known as the best-of-n decision problem where the swarm is required to select the best option among n available alternatives. Solving the best-of-n decision problem is considered to be a fundamental cognitive skill for robot swarms as it influences the swarm's success in other tasks. In this thesis, we introduce individual behavioural rules to improve the performance of robot swarms in the best-of-n problem. Through these rules, robots vary their interaction strength over time in a decentralised fashion to balance the acquisition and the dissemination of information. The proposed behavioural rules allow swarms of simple noisy robots with constrained communication to limit the effect of individual errors and make highly accurate collective decisions in a predictable time. In some scenarios where the best option changes over time, the swarm is required to switch its decision accordingly. In this thesis, we introduce individual behavioural rules through which the robots process new information and discard outdated beliefs. These behavioural rules enable robot swarms to adapt their decisions to various environmental changes, including the appearance of better choices or the disappearance of the current swarm's choice. Our analysis shows that relying on local communication is more favourable for achieving adaptation. This result highlights the benefit of the local sensing and communication characterising biological and artificial swarms. The second task we address in this thesis is the collective resource collection task. In this task, the robots are asked to retrieve objects that are clustered at unknown locations in the environment. We address this task because of its numerous potential real-world applications. In many of these applications, the objects to collect are assigned different importance or value. In this thesis, we introduce a bio-inspired individual behaviour that allows robot swarms to perform quality-based resource collection. Similarly to foraging ants, in our proposed behaviour, the robots coordinate their collection efforts by laying and sensing virtual pheromone trails. The use of pheromone trails offers an advantageous implementation of the memory and communication capabilities necessary for the efficient collection of clustered objects. The proposed behaviour allows robot swarms to satisfy various collection objectives and achieve an optimal resource collection behaviour in the case of relatively small swarms. In this thesis, we analyse swarm robotics systems using both minimalistic tools such as stochastic and multi-agent simulations, and more advanced tools such as physics-based simulations and real robot experiments. Using these tools, we demonstrate the effectiveness of the proposed individual behavioural rules in improving the performance of robot swarms in the addressed tasks. The results we present in this thesis are of potential interest to both engineers designing robot swarms, and biologists investigating the behavioural rules followed by individuals in living collective organisms

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    Hear Me Out: A Study on the Use of the Voice Modality for Crowdsourced Relevance Assessments

    Full text link
    The creation of relevance assessments by human assessors (often nowadays crowdworkers) is a vital step when building IR test collections. Prior works have investigated assessor quality & behaviour, though into the impact of a document's presentation modality on assessor efficiency and effectiveness. Given the rise of voice-based interfaces, we investigate whether it is feasible for assessors to judge the relevance of text documents via a voice-based interface. We ran a user study (n = 49) on a crowdsourcing platform where participants judged the relevance of short and long documents sampled from the TREC Deep Learning corpus-presented to them either in the text or voice modality. We found that: (i) participants are equally accurate in their judgements across both the text and voice modality; (ii) with increased document length it takes participants significantly longer (for documents of length > 120 words it takes almost twice as much time) to make relevance judgements in the voice condition; and (iii) the ability of assessors to ignore stimuli that are not relevant (i.e., inhibition) impacts the assessment quality in the voice modality-assessors with higher inhibition are significantly more accurate than those with lower inhibition. Our results indicate that we can reliably leverage the voice modality as a means to effectively collect relevance labels from crowdworkers.Comment: Accepted at SIGIR 202

    An Approach Based on Particle Swarm Optimization for Inspection of Spacecraft Hulls by a Swarm of Miniaturized Robots

    Get PDF
    The remoteness and hazards that are inherent to the operating environments of space infrastructures promote their need for automated robotic inspection. In particular, micrometeoroid and orbital debris impact and structural fatigue are common sources of damage to spacecraft hulls. Vibration sensing has been used to detect structural damage in spacecraft hulls as well as in structural health monitoring practices in industry by deploying static sensors. In this paper, we propose using a swarm of miniaturized vibration-sensing mobile robots realizing a network of mobile sensors. We present a distributed inspection algorithm based on the bio-inspired particle swarm optimization and evolutionary algorithm niching techniques to deliver the task of enumeration and localization of an a priori unknown number of vibration sources on a simplified 2.5D spacecraft surface. Our algorithm is deployed on a swarm of simulated cm-scale wheeled robots. These are guided in their inspection task by sensing vibrations arising from failure points on the surface which are detected by on-board accelerometers. We study three performance metrics: (1) proximity of the localized sources to the ground truth locations, (2) time to localize each source, and (3) time to finish the inspection task given a 75% inspection coverage threshold. We find that our swarm is able to successfully localize the present so

    Attention Restraint, Working Memory Capacity, and Mind Wandering: Do Emotional Valence or Intentionality Matter?

    Get PDF
    Attention restraint appears to mediate the relationship between working memory capacity (WMC) and mind wandering (Kane et al., 2016). Prior work has identifed two dimensions of mind wandering—emotional valence and intentionality. However, less is known about how WMC and attention restraint correlate with these dimensions. Te current study examined the relationship between WMC, attention restraint, and mind wandering by emotional valence and intentionality. A confrmatory factor analysis demonstrated that WMC and attention restraint were strongly correlated, but only attention restraint was related to overall mind wandering, consistent with prior fndings. However, when examining the emotional valence of mind wandering, attention restraint and WMC were related to negatively and positively valenced, but not neutral, mind wandering. Attention restraint was also related to intentional but not unintentional mind wandering. Tese results suggest that WMC and attention restraint predict some, but not all, types of mind wandering

    Eye quietness and quiet eye in expert and novice golf performance: an electrooculographic analysis

    Get PDF
    Quiet eye (QE) is the final ocular fixation on the target of an action (e.g., the ball in golf putting). Camerabased eye-tracking studies have consistently found longer QE durations in experts than novices; however, mechanisms underlying QE are not known. To offer a new perspective we examined the feasibility of measuring the QE using electrooculography (EOG) and developed an index to assess ocular activity across time: eye quietness (EQ). Ten expert and ten novice golfers putted 60 balls to a 2.4 m distant hole. Horizontal EOG (2ms resolution) was recorded from two electrodes placed on the outer sides of the eyes. QE duration was measured using a EOG voltage threshold and comprised the sum of the pre-movement and post-movement initiation components. EQ was computed as the standard deviation of the EOG in 0.5 s bins from –4 to +2 s, relative to backswing initiation: lower values indicate less movement of the eyes, hence greater quietness. Finally, we measured club-ball address and swing durations. T-tests showed that total QE did not differ between groups (p = .31); however, experts had marginally shorter pre-movement QE (p = .08) and longer post-movement QE (p < .001) than novices. A group × time ANOVA revealed that experts had less EQ before backswing initiation and greater EQ after backswing initiation (p = .002). QE durations were inversely correlated with EQ from –1.5 to 1 s (rs = –.48 - –.90, ps = .03 - .001). Experts had longer swing durations than novices (p = .01) and, importantly, swing durations correlated positively with post-movement QE (r = .52, p = .02) and negatively with EQ from 0.5 to 1s (r = –.63, p = .003). This study demonstrates the feasibility of measuring ocular activity using EOG and validates EQ as an index of ocular activity. Its findings challenge the dominant perspective on QE and provide new evidence that expert-novice differences in ocular activity may reflect differences in the kinematics of how experts and novices execute skills
    • …
    corecore