1,176 research outputs found

    Improving Clonal Colony Optimization to Evolve Robust Solutions

    Get PDF
    In this article we work with a recently introduced metaheuristic for robust optimization, inspired by the structure and behavior of biologic clonal colonies. We propose some improvements to increase their exploration and the exploitation capabilities. Our approach is compared to other robust optimization techniques, focusing in how the population is managed during the search

    A Brief Review of Bio-Inspired Algorithms in Computational Perspective - Bio Inspired Algorithms

    Get PDF
    Computing over the years has evolved from being simplex mathematical processing machine to more sophisticated problem solving entity pushing limits around reasoning and intelligence. Along the way, lots scientists and engineers have closely observed some of the biological processes achieving certain things in a more efficient and simple fashion than traditional computational mechanisms. This has led to development of various techniques and algorithms which try and mimic these biological processes and are categorised under, Bio-Inspired Computing

    Evolutionary Algorithms with Mixed Strategy

    Get PDF

    Soft computing applied to optimization, computer vision and medicine

    Get PDF
    Artificial intelligence has permeated almost every area of life in modern society, and its significance continues to grow. As a result, in recent years, Soft Computing has emerged as a powerful set of methodologies that propose innovative and robust solutions to a variety of complex problems. Soft Computing methods, because of their broad range of application, have the potential to significantly improve human living conditions. The motivation for the present research emerged from this background and possibility. This research aims to accomplish two main objectives: On the one hand, it endeavors to bridge the gap between Soft Computing techniques and their application to intricate problems. On the other hand, it explores the hypothetical benefits of Soft Computing methodologies as novel effective tools for such problems. This thesis synthesizes the results of extensive research on Soft Computing methods and their applications to optimization, Computer Vision, and medicine. This work is composed of several individual projects, which employ classical and new optimization algorithms. The manuscript presented here intends to provide an overview of the different aspects of Soft Computing methods in order to enable the reader to reach a global understanding of the field. Therefore, this document is assembled as a monograph that summarizes the outcomes of these projects across 12 chapters. The chapters are structured so that they can be read independently. The key focus of this work is the application and design of Soft Computing approaches for solving problems in the following: Block Matching, Pattern Detection, Thresholding, Corner Detection, Template Matching, Circle Detection, Color Segmentation, Leukocyte Detection, and Breast Thermogram Analysis. One of the outcomes presented in this thesis involves the development of two evolutionary approaches for global optimization. These were tested over complex benchmark datasets and showed promising results, thus opening the debate for future applications. Moreover, the applications for Computer Vision and medicine presented in this work have highlighted the utility of different Soft Computing methodologies in the solution of problems in such subjects. A milestone in this area is the translation of the Computer Vision and medical issues into optimization problems. Additionally, this work also strives to provide tools for combating public health issues by expanding the concepts to automated detection and diagnosis aid for pathologies such as Leukemia and breast cancer. The application of Soft Computing techniques in this field has attracted great interest worldwide due to the exponential growth of these diseases. Lastly, the use of Fuzzy Logic, Artificial Neural Networks, and Expert Systems in many everyday domestic appliances, such as washing machines, cookers, and refrigerators is now a reality. Many other industrial and commercial applications of Soft Computing have also been integrated into everyday use, and this is expected to increase within the next decade. Therefore, the research conducted here contributes an important piece for expanding these developments. The applications presented in this work are intended to serve as technological tools that can then be used in the development of new devices

    Hybrid nature-inspired computation methods for optimization

    Get PDF
    The focus of this work is on the exploration of the hybrid Nature-Inspired Computation (NIC) methods with application in optimization. In the dissertation, we first study various types of the NIC algorithms including the Clonal Selection Algorithm (CSA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Simulated Annealing (SA), Harmony Search (HS), Differential Evolution (DE), and Mind Evolution Computing (MEC), and propose several new fusions of the NIC techniques, such as CSA-DE, HS-DE, and CSA-SA. Their working principles, structures, and algorithms are analyzed and discussed in details. We next investigate the performances of our hybrid NIC methods in handling nonlinear, multi-modal, and dynamical optimization problems, e.g., nonlinear function optimization, optimal LC passive power filter design, and optimization of neural networks and fuzzy classification systems. The hybridization of these NIC methods can overcome the shortcomings of standalone algorithms while still retaining all the advantages. It has been demonstrated using computer simulations that the proposed hybrid NIC approaches are capable of yielding superior optimization performances over the individual NIC methods as well as conventional methodologies with regard to the search efficiency, convergence speed, and quantity and quality of the optimal solutions achieved

    Computational approaches for translational oncology: Concepts and patents

    Get PDF
    Background: Cancer is a heterogeneous disease, which is based on an intricate network of processes at different spatiotemporal scales, from the genome to the tissue level. Hence the necessity for the biomedical and pharmaceutical research to work in a multiscale fashion. In this respect, a significant help derives from the collaboration with theoretical sciences. Mathematical models can in fact provide insights into tumor-related processes and support clinical oncologists in the design of treatment regime, dosage, schedule and toxicity. Objective and Method: The main objective of this article is to review the recent computational-based patents which tackle some relevant aspects of tumor treatment. We first analyze a series of patents concerning the purposing the purposing or repurposing of anti-tumor compounds. These approaches rely on pharmacokinetics and pharmacodynamics modules, that incorporate data obtained in the different phases of clinical trials. Similar methods are also at the basis of other patents included in this paper, which deal with treatment optimization, in terms of maximizing therapy efficacy while minimizing side effects on the host. A group of patents predicting drug response and tumor evolution by the use of kinetics graphs are commented as well. We finally focus on patents that implement informatics tools to map and screen biological, medical, and pharmaceutical knowledge. Results and Conclusions: Despite promising aspects (and an increasing amount of the relative literature), we found few computational-based patents: There is still a significant effort to do for allowing modelling approaches to become an integral component of the pharmaceutical research

    ć…ç–«ć­Šçš„ăŠă‚ˆăłé€ČćŒ–çš„ă‚ąăƒ«ă‚ŽăƒȘă‚șムにćŸșă„ăæ”čè‰Żă•ă‚ŒăŸçŸ€çŸ„èƒœæœ€é©ćŒ–ă«é–ąă™ă‚‹ç ”ç©¶

    Get PDF
    ćŻŒć±±ć€§ć­Šăƒ»ćŻŒç†ć·„ćšç”Č珏175ć·ăƒ»æ„ŠçŽ‰ăƒ»2020/3/24ćŻŒć±±ć€§ć­Š202
    • 

    corecore