29,957 research outputs found

    On The Stability of Interpretable Models

    Full text link
    Interpretable classification models are built with the purpose of providing a comprehensible description of the decision logic to an external oversight agent. When considered in isolation, a decision tree, a set of classification rules, or a linear model, are widely recognized as human-interpretable. However, such models are generated as part of a larger analytical process. Bias in data collection and preparation, or in model's construction may severely affect the accountability of the design process. We conduct an experimental study of the stability of interpretable models with respect to feature selection, instance selection, and model selection. Our conclusions should raise awareness and attention of the scientific community on the need of a stability impact assessment of interpretable models

    Generative Adversarial Trainer: Defense to Adversarial Perturbations with GAN

    Full text link
    We propose a novel technique to make neural network robust to adversarial examples using a generative adversarial network. We alternately train both classifier and generator networks. The generator network generates an adversarial perturbation that can easily fool the classifier network by using a gradient of each image. Simultaneously, the classifier network is trained to classify correctly both original and adversarial images generated by the generator. These procedures help the classifier network to become more robust to adversarial perturbations. Furthermore, our adversarial training framework efficiently reduces overfitting and outperforms other regularization methods such as Dropout. We applied our method to supervised learning for CIFAR datasets, and experimantal results show that our method significantly lowers the generalization error of the network. To the best of our knowledge, this is the first method which uses GAN to improve supervised learning

    Improving the Resolution of CNN Feature Maps Efficiently with Multisampling

    Full text link
    We describe a new class of subsampling techniques for CNNs, termed multisampling, that significantly increases the amount of information kept by feature maps through subsampling layers. One version of our method, which we call checkered subsampling, significantly improves the accuracy of state-of-the-art architectures such as DenseNet and ResNet without any additional parameters and, remarkably, improves the accuracy of certain pretrained ImageNet models without any training or fine-tuning. We glean new insight into the nature of data augmentations and demonstrate, for the first time, that coarse feature maps are significantly bottlenecking the performance of neural networks in image classification.Comment: Preprin

    Spatial distribution of HD-EMG improves identification of task and force in patients with incomplete spinal cord injury

    Get PDF
    Background: Recent studies show that spatial distribution of High Density surface EMG maps (HD-EMG) improves the identification of tasks and their corresponding contraction levels. However, in patients with incomplete spinal cord injury (iSCI), some nerves that control muscles are damaged, leaving some muscle parts without an innervation. Therefore, HD-EMG maps in patients with iSCI are affected by the injury and they can be different for every patient. The objective of this study is to investigate the spatial distribution of intensity in HD-EMG recordings to distinguish co-activation patterns for different tasks and effort levels in patients with iSCI. These patterns are evaluated to be used for extraction of motion intention.; Method: HD-EMG was recorded in patients during four isometric tasks of the forearm at three different effort levels. A linear discriminant classifier based on intensity and spatial features of HD-EMG maps of five upper-limb muscles was used to identify the attempted tasks. Task and force identification were evaluated for each patient individually, and the reliability of the identification was tested with respect to muscle fatigue and time interval between training and identification. Results: Three feature sets were analyzed in the identification: 1) intensity of the HD-EMG map, 2) intensity and center of gravity of HD-EMG maps and 3) intensity of a single differential EMG channel (gold standard).; Results show that the combination of intensity and spatial features in classification identifies tasks and effort levels properly (Acc = 98.8 %; S = 92.5 %; P = 93.2 %; SP = 99.4 %) and outperforms significantly the other two feature sets (p < 0.05).; Conclusion: In spite of the limited motor functionality, a specific co-activation pattern for each patient exists for both intensity, and spatial distribution of myoelectric activity. The spatial distribution is less sensitive than intensity to myoelectric changes that occur due to fatigue, and other time-dependent influences.Peer ReviewedPostprint (published version

    Knowledge Distillation with Adversarial Samples Supporting Decision Boundary

    Full text link
    Many recent works on knowledge distillation have provided ways to transfer the knowledge of a trained network for improving the learning process of a new one, but finding a good technique for knowledge distillation is still an open problem. In this paper, we provide a new perspective based on a decision boundary, which is one of the most important component of a classifier. The generalization performance of a classifier is closely related to the adequacy of its decision boundary, so a good classifier bears a good decision boundary. Therefore, transferring information closely related to the decision boundary can be a good attempt for knowledge distillation. To realize this goal, we utilize an adversarial attack to discover samples supporting a decision boundary. Based on this idea, to transfer more accurate information about the decision boundary, the proposed algorithm trains a student classifier based on the adversarial samples supporting the decision boundary. Experiments show that the proposed method indeed improves knowledge distillation and achieves the state-of-the-arts performance.Comment: Accepted to AAAI 201

    Multi-view Face Detection Using Deep Convolutional Neural Networks

    Full text link
    In this paper we consider the problem of multi-view face detection. While there has been significant research on this problem, current state-of-the-art approaches for this task require annotation of facial landmarks, e.g. TSM [25], or annotation of face poses [28, 22]. They also require training dozens of models to fully capture faces in all orientations, e.g. 22 models in HeadHunter method [22]. In this paper we propose Deep Dense Face Detector (DDFD), a method that does not require pose/landmark annotation and is able to detect faces in a wide range of orientations using a single model based on deep convolutional neural networks. The proposed method has minimal complexity; unlike other recent deep learning object detection methods [9], it does not require additional components such as segmentation, bounding-box regression, or SVM classifiers. Furthermore, we analyzed scores of the proposed face detector for faces in different orientations and found that 1) the proposed method is able to detect faces from different angles and can handle occlusion to some extent, 2) there seems to be a correlation between dis- tribution of positive examples in the training set and scores of the proposed face detector. The latter suggests that the proposed methods performance can be further improved by using better sampling strategies and more sophisticated data augmentation techniques. Evaluations on popular face detection benchmark datasets show that our single-model face detector algorithm has similar or better performance compared to the previous methods, which are more complex and require annotations of either different poses or facial landmarks.Comment: in International Conference on Multimedia Retrieval 2015 (ICMR

    Imbalanced Ensemble Classifier for learning from imbalanced business school data set

    Full text link
    Private business schools in India face a common problem of selecting quality students for their MBA programs to achieve the desired placement percentage. Generally, such data sets are biased towards one class, i.e., imbalanced in nature. And learning from the imbalanced dataset is a difficult proposition. This paper proposes an imbalanced ensemble classifier which can handle the imbalanced nature of the dataset and achieves higher accuracy in case of the feature selection (selection of important characteristics of students) cum classification problem (prediction of placements based on the students' characteristics) for Indian business school dataset. The optimal value of an important model parameter is found. Numerical evidence is also provided using Indian business school dataset to assess the outstanding performance of the proposed classifier
    corecore