74 research outputs found

    SSVEP-Based BCIs

    Get PDF
    This chapter describes the method of flickering targets, eliciting fundamental frequency changes in the EEG signal of the subject, used to drive machine commands after interpretation of user’s intentions. The steady-state response of the changes in the EEG caused by events such as visual stimulus applied to the subject via a computer screen is called steady-state visually evoked potential (SSVEP). This feature of the EEG signal can be used to form a basis of input to assistive devices for locked in patients to improve their quality of life, as well as for performance enhancing devices for healthy subjects. The contents of this chapter describe the SSVEP stimuli; feature extraction techniques, feature classification techniques and a few applications based on SSVEP based BCI

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    A supervised machine-learning method for detecting steady-state visually evoked potentials for use in brain computer interfaces: A comparative assessment

    Get PDF
    It is hypothesised that supervised machine learning on the estimated parameters output by a model for visually evoked potentials (VEPs), created by Kremlácek et al. (2002), could be used to classify steady-state visually evoked potentials (SSVEP) by frequency of stimulation. Classification of SSVEPs by stimulus frequency has application in SSVEP-based brain computer interfaces (BCI), where users are presented with flashing stimuli and user intent is decoded by identifying which stimulus the subject is attending to. We investigate the ability of the model of VEPs to fit the initial portions of SSVEPs, which are not yet in a steady state and contain characteristic features of VEPs superimposed with those of a steady state response. In this process the estimated parameters, as a function of the model for a given SSVEP response, were found. These estimated parameters were used to train several support vector machines (SVM) to classify the SSVEPs. Three initialisation conditions for the model are examined for their contribution to the goodness of fit and the subsequent classification accuracy, of the SVMs. It was found that the model was able to fit SSVEPs with a normalised root mean square error (NRMSE) of 27%, this performance did not match the expected NRMSE values of 13% reported by Kremlácek et al. (2002) for fits on VEPs. The fit data was assessed by the machine learning scheme and generated parameters which were classifiable by SVM above a random chance of 14% (Reang 9% to 28%). It was also shown that the selection of initial parameters had no distinct effect on the classification accuracy. Traditional classification approaches using spectral techniques such as Power Spectral Density Analysis (PSDA) and canonical correlation analysis (CCA) require a window period of data above 1 s to perform accurately enough for use in BCIs. The larger the window period of SSVEP data used the more the Information transfer rate (ITR) decreases. Undertaking a successful classification on only the initial 250 ms portions of SSVEP data would lead to an improved ITR and a BCI which is faster to use. Classification of each method was assessed at three SSVEP window periods (0.25, 0.5 and 1 s). Comparison of the three methods revealed that, on a whole CCA outperformed both the PSDA and SVM methods. While PSDA performance was in-line with that of the SVM method. All methods performed poorly at the window period of 0.25 s with an average accuracy converging on random chance - 14%. At the window period of 0.5 s the CCA only marginally outperformed the SVM method and at a time of 1 s the CCA method significantly (p<0.05) outperformed the SVM method. While the SVMs tended to improve with window period the results were not generally significant. It was found that certain SVMs (Representing a unique combination of subject, initial conditions and window period) achieved an accuracy as high as 30%. For a few instances the accuracy was comparable to the CCA method with a significance of 5%. While we were unable to predict which SVM would perform well for a given subject, it was demonstrated that with further refinement this novel method may produce results similar to or better than that of CCA

    Eye tracking with EEG life-style

    Get PDF
    Innovative human-computer interaction paradigms with minimum motor control provide realistic interactions and have potential for use in assistive technologies. Among the human modalities, the eyes and the brain are the two modalities with minimum motor requirements. Most of the existing assistive technologies based on tracking the eyes (such as electrooculography and videooculography) are intrusive, limited to the laboratory environment and restrictive or are not accurate enough for real-life applications. The same limitations apply to brain activity monitoring systems such as electroencephalography (EEG). In this research, the objective is to employ a less-intrusive, consumer-grade EEG headset designed for mobile applications to track the user’s eyes and reliably estimate focus of foveal attention (FoA). To this end, signal processing approaches are proposed in order to classify different types of eye movements and estimate FoA. The FoA estimation is then improved using the brain responses to flickering stimuli recorded in EEG data. Afterwards, the FoA estimation is again improved by proposing an automated method to remove eye-related artefacts from brain responses to the stimuli. Finally, the FoA estimation is best improved by extracting eye-movement classification and brain-response detection features from EEG data projected into independent sources

    A Hybrid Brain-Computer Interface for Closed- Loop Position Control of a Robot Arm

    Get PDF
    Brain-Computer Interfacing has currently added a new dimension in assistive robotics. Existing brain-computer interfaces designed for position control applications suffer from two fundamental limitations. First, most of the existing schemes employ open-loop control, and thus are unable to track the positional errors, resulting in failures in taking necessary online corrective actions. There are traces of one or fewer works dealing with closed-loop EEG-based position control. The existing closed-loop brain-induced position control schemes employ a fixed order link selection rule, which often creates a bottleneck for time-efficient control. Second, the existing brain-induced position controllers are designed to generate the position response like a traditional first-order system, resulting in a large steady-state error. This paper overcomes the above two limitations by keeping provisions for (Steady-State Visual Evoked Potential induced) link-selection in an arbitrary order as required for efficient control and also to generate a second-order response of the position-control system with gradually diminishing overshoots/undershoots to reduce steady-state errors. Besides the above, the third novelty is to utilize motor imagery and P300 signals to design the hybrid brain-computer interfacing system for the said application with gradually diminishing error-margin by speed reversal at the zero-crossings of positional errors. Experiments undertaken reveal that the steady-state error is reduced to 0.2%. The paper also provides a thorough analysis of stability of the closed-loop system performance using Root Locus technique

    Electroencephalography (EEG)-based brain computer interfaces for rehabilitation

    Get PDF
    Objective: Brain-computer interface (BCI) technologies have been the subject of study for the past decades to help restore functions for people with severe motor disabilities and to improve their quality of life. BCI research can be generally categorized by control signals (invasive/non-invasive) or applications (e.g. neuroprosthetics/brain-actuated wheelchairs), and efforts have been devoted to better understand the characteristics and possible uses of brain signals. The purpose of this research is to explore the feasibility of a non-invasive BCI system with the combination of unique sensorimotor-rhythm (SMR) features. Specifically, a 2D virtual wheelchair control BCI is implemented to extend the application of previously designed 2D cursor control BCI, and the feasibility of the prototype is tested in electroencephalography (EEG) experiments; guidance on enhancing system performance is provided by a simulation incorporating intelligent control approaches under different EEG decoding accuracies; pattern recognition methods are explored to provide optimized classification results; and a hybrid BCI system is built to enhance the usability of the wheelchair BCI system. Methods: In the virtual wheelchair control study, a creative and user friendly control strategy was proposed, and a paradigm was designed in Matlab, providing a virtual environment for control experiments; five subjects performed physical/imagined left/right hand movements or non-control tasks to control the virtual wheelchair to move forward, turn left/right or stop; 2-step classification methods were employed and the performance was evaluated by hit rate and control time. Feature analysis and time-frequency analysis were conducted to examine the spatial, temporal and frequency properties of the utilized SMR features, i.e. event-related desynchronization (ERD) and post-movement event-related synchronization (ERS). The simulation incorporated intelligent control methods, and evaluated navigation and positioning performance with/without obstacles under different EEG decoding accuracies, to better guide optimization. Classification methods were explored considering different feature sets, tuned classifier parameters and the simulation results, and a recommendation was provided to the proposed system. In the steady state visual evoked potential (SSVEP) system for hybrid BCI study, a paradigm was designed, and an electric circuit system was built to provide visual stimulus, involving SSVEP as another type of signal being used to drive the EEG BCI system. Experiments were conducted and classification methods were explored to evaluate the system performance. Results: ERD was observed on both hemispheres during hand\u27s movement or motor imagery; ERS was observed on the contralateral hemisphere after movement or motor imagery stopped; five subjects participated in the continuous 2D virtual wheelchair control study and 4 of them hit the target with 100% hit rate in their best set with motor imagery. The simulation results indicated that the average hit rate with 10 obstacles can get above 95% for pass-door tests and above 70% for positioning tests, with EEG decoding accuracies of 70% for Non-Idle signals and 80% for idle signals. Classification methods showed that with properly tuned parameters, an average of about 70%-80% decoding accuracy for all the classifiers could be reached, which reached the requirements set by the simulation test. Initial test on the SSVEP BCI system exhibited high classification accuracy, which may extend the usability of the wheelchair system to a larger population when finally combined with ERD/ERS BCI system. Conclusion: This research investigated the feasibility of using both ERD and ERS associated with natural hand\u27s motor imagery, aiming to implement practical BCI systems for the end users in the rehabilitation stage. The simulation with intelligent controls provided guides and requirements for EEG decoding accuracies, based on which pattern recognition methods were explored; properly selected features and adjusted parameters enabled the classifiers to exhibit optimal performance, suitable for the proposed system. Finally, to enlarge the population for which the wheelchair BCI system could benefit for, a SSVEP system for hybrid BCI was designed and tested. These systems provide a non-invasive, practical approach for BCI users in controlling assistive devices such as a virtual wheelchair, in terms of ease of use, adequate speed, and sufficient control accuracy

    Applications of multi-way analysis for characterizing paediatric electroencephalogram (EEG) recordings

    Get PDF
    This doctoral thesis outlines advances in multi-way analysis for characterizing electroencephalogram (EEG) recordings from a paediatric population, with the aim to describe new links between EEG data and changes in the brain. This entails establishing the validity of multi-way analysis as a framework for identifying developmental information at the individual and collective level. Multi-way analysis broadens matrix analysis to a multi-linear algebraic architecture to identify latent structural relationships in naturally occurring higher order (n-way) data, like EEG. We use the canonical polyadic decomposition (CPD) as a multi-way model to efficiently express the complex structures present in paediatric EEG recordings as unique combinations of low-rank matrices, offering new insights into child development. This multi-way CPD framework is explored for both typically developing (TD) children and children with potential developmental delays (DD), e.g. children who suffer from epilepsy or paediatric stroke. Resting-state EEG (rEEG) data serves as an intuitive starting point in analyzing paediatric EEG via multi-way analysis. Here, the CPD model probes the underlying relationships between the spatial, spectral and subject modes of several rEEG datasets. We demonstrate the CPD can reveal distinct population-level features in rEEG that reflect unique developmental traits in varying child populations. These development-affiliated profiles are evaluated with respect to capturing structures well-established in childhood EEG. The identified features are also interrogated for their predictive abilities in anticipating new subjects’ ages. Assessing simulations and real rEEG datasets of TD and DD children establishes the multi-way analysis framework as well suited for identifying developmental profiles from paediatric rEEG. We extend the multi-way analysis scheme to more complex EEG scenarios common in EEG rehabilitation technology, like brain-computer interfaces. We explore the feasibility of multi-way modelling for interventions where developmental changes often pose as barriers. The multi-way CPD model is expanded to include four modes- task, spatial, spectral and subject data, with non-negativity and orthogonality constraints imposed. We analyze a visual attention task that elucidates a steady-state visual evoked potential and present the advantages gained from the extended CPD model. Through direct multi-linear projection, we demonstrate that linear profiles of the CPD can be capitalized upon for rapid task classification sans individual subject classifier calibration. Incorporating concepts from the multi-way analysis scheme with child development measured by psychometric tests, we propose the Joint EEG Development Inference (JEDI) model for inferring development from paediatric EEG. We utilize a common EEG task (button-press) to establish a 4-way CPD model of paediatric EEG data. Structured data fusion of the CPD model and cognitive scores from psychometric evaluations then permits joint decomposition of the two datasets to identify common features associated with each representation of development. Use of grid search optimization and a fully cross-validated design supports the JEDI model as another technique for rapidly discerning the developmental status of a child via EEG. We then briefly turn our attention to associating child development as measured by psychometric tests to markers in the EEG using graph network properties. Using graph networks, we show how the functional connectivity can inform on potential developmental delays in very young epileptic children using routine, clinical rEEG measures. This establishes a potential tool complementary to the JEDI model for identifying and inferring links between the established psychometric evaluation of developing children and functional analysis of the EEG. Multi-way analysis of paediatric EEG data offers a new approach for handling the developmental status and profiles of children. The CPD model offers flexibility in terms of identifying development-related features, and can be integrated into EEG tasks common in rehabilitation paradigms. We aim for the multi-way framework and associated techniques pursued in this thesis to be integrated and adopted as a useful tool clinicians can use for characterizing paediatric development
    • …
    corecore