2,133 research outputs found

    Study and simulation of low rate video coding schemes

    Get PDF
    The semiannual report is included. Topics covered include communication, information science, data compression, remote sensing, color mapped images, robust coding scheme for packet video, recursively indexed differential pulse code modulation, image compression technique for use on token ring networks, and joint source/channel coder design

    Progressive transmission of pseudo-color images. Appendix 1: Item 4

    Get PDF
    The transmission of digital images can require considerable channel bandwidth. The cost of obtaining such a channel can be prohibitive, or the channel might simply not be available. In this case, progressive transmission (PT) can be useful. PT presents the user with a coarse initial image approximation, and then proceeds to refine it. In this way, the user tends to receive information about the content of the image sooner than if a sequential transmission method is used. PT finds application in image data base browsing, teleconferencing, medical and other applications. A PT scheme is developed for use with a particular type of image data, the pseudo-color or color mapped image. Such images consist of a table of colors called a colormap, plus a 2-D array of index values which indicate which colormap entry is to be used to display a given pixel. This type of image presents some unique problems for a PT coder, and techniques for overcoming these problems are developed. A computer simulation of the color mapped PT scheme is developed to evaluate its performance. Results of simulation using several test images are presented

    Studies on image compression and image reconstruction

    Get PDF
    During this six month period our works concentrated on three, somewhat different areas. We looked at and developed a number of error concealment schemes for use in a variety of video coding environments. This work is described in an accompanying (draft) Masters thesis. In the thesis we describe application of this techniques to the MPEG video coding scheme. We felt that the unique frame ordering approach used in the MPEG scheme would be a challenge to any error concealment/error recovery technique. We continued with our work in the vector quantization area. We have also developed a new type of vector quantizer, which we call a scan predictive vector quantization. The scan predictive VQ was tested on data processed at Goddard to approximate Landsat 7 HRMSI resolution and compared favorably with existing VQ techniques. A paper describing this work is included. The third area is concerned more with reconstruction than compression. While there is a variety of efficient lossless image compression schemes, they all have a common property that they use past data to encode future data. This is done either via taking differences, context modeling, or by building dictionaries. When encoding large images, this common property becomes a common flaw. When the user wishes to decode just a portion of the image, the requirement that the past history be available forces the decoding of a significantly larger portion of the image than desired by the user. Even with intelligent partitioning of the image dataset, the number of pixels decoded may be four times the number of pixels requested. We have developed an adaptive scanning strategy which can be used with any lossless compression scheme and which lowers the additional number of pixels to be decoded to about 7 percent of the number of pixels requested! A paper describing these results is included

    Computational valve plate design

    Get PDF
    Axial piston machines are widely used in many industries for their designs compactness, flexibility in power transfer, variable flow rate, and high efficiencies as compared to their manufacturing costs. One important component of all axial piston machines that is a very influential on the performance of the unit is the valve plate. The aim of this research is to develop a design methodology that is general enough to design all types of valve plates and the simple enough not to require advanced technical knowledge from the user. A new style of valve plate designs has been developed that comprehensively considers all previous design techniques and does not require significant changes to the manufacturing processes of valve plates. The design methodology utilizes a previously developed accurate computer model of the physical phenomenon. This allows the precise optimization of the valve plate design through the use of simulations rather than expensive trial and error processes. The design of the valve plate is clarified into the form of an optimization problem. This formulation into an optimization problem has motivated the selection of an optimization algorithm that satisfies the requirements of the design. The proposed design methodology was successfully tested in a case study in the shown to be very successful in improving required performance of the valve plate design
    corecore