2,129 research outputs found

    Tissue-conducted spatial sound fields

    Get PDF
    We describe experiments using multiple cranial transducers to achieve auditory spatial perceptual impressions via bone (BC) and tissue conduction (TC), bypassing the peripheral hearing apparatus. This could be useful in cases of peripheral hearing damage or where ear-occlusion is undesirable. Previous work (e.g. Stanley and Walker 2006, MacDonald and Letowski 2006)1,2 indicated robust lateralization is feasible via tissue conduction. We have utilized discrete signals, stereo and first order ambisonics to investigate control of externalization, range, direction in azimuth and elevation, movement and spaciousness. Early results indicate robust and coherent effects. Current technological implementations are presented and potential development paths discussed

    On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect

    Full text link
    [EN] Source separation algorithms based on spatial cues generally face two major problems. The first one is their general performance degradation in reverberant environments and the second is their inability to differentiate closely located sources due to similarity of their spatial cues. The latter problem gets amplified in highly reverberant environments as reverberations have a distorting effect on spatial cues. In this paper, we have proposed a separation algorithm, in which inside an enclosure, the distortions due to reverberations in a spatial cue based source separation algorithm namely model-based expectation-maximization source separation and localization (MESSL) are minimized by using the Precedence effect. The Precedence effect acts as a gatekeeper which restricts the reverberations entering the separation system resulting in its improved separation performance. And this effect is automatically transformed into the Clifton effect to deal with the dynamic acoustic conditions. Our proposed algorithm has shown improved performance over MESSL in all kinds of reverberant conditions including closely located sources. On average, 22.55% improvement in SDR (signal to distortion ratio) and 15% in PESQ (perceptual evaluation of speech quality) is observed by using the Clifton effect to tackle dynamic reverberant conditions.This project is funded by Higher Education Commission (HEC), Pakistan, under project no. 6330/KPK/NRPU/R&D/HEC/2016.Gul, S.; Khan, MS.; Shah, SW.; Lloret, J. (2020). On enhancing model-based expectation maximization source separation in dynamic reverberant conditions using automatic Clifton effect. International Journal of Communication Systems. 33(3):1-18. https://doi.org/10.1002/dac.421011833

    Auditory masking and the Precedence Effect in Studies of Musical Timekeeping

    Get PDF
    Musical timekeeping is an important and evolving area of research with applications in a variety of music education and performance situations. Studies in this field are of ten concerned with being able to measure the accuracy or consistency of human participants, for whatever purpose is being investigated. Our initial explorations suggest that little has been done to consider the role that auditory masking, specifically the precedence effect, plays in the study of human timekeeping tasks. In this paper, we highlight the importance of integrating masking into studies of timekeeping and suggest areas for discussion and future research, to address shortfalls in the literature

    Design For Auditory Displays: Identifying Temporal And Spatial Information Conveyance Principles

    Get PDF
    Designing auditory interfaces is a challenge for current human-systems developers. This is largely due to a lack of theoretical guidance for directing how best to use sounds in today\u27s visually-rich graphical user interfaces. This dissertation provided a framework for guiding the design of audio interfaces to enhance human-systems performance. This doctoral research involved reviewing the literature on conveying temporal and spatial information using audio, using this knowledge to build three theoretical models to aid the design of auditory interfaces, and empirically validating select components of the models. The three models included an audio integration model that outlines an end-to-end process for adding sounds to interactive interfaces, a temporal audio model that provides a framework for guiding the timing for integration of these sounds to meet human performance objectives, and a spatial audio model that provides a framework for adding spatialization cues to interface sounds. Each model is coupled with a set of design guidelines theorized from the literature, thus combined, the developed models put forward a structured process for integrating sounds in interactive interfaces. The developed models were subjected to a three phase validation process that included review by Subject Matter Experts (SMEs) to assess the face validity of the developed models and two empirical studies. For the SME review, which assessed the utility of the developed models and identified opportunities for improvement, a panel of three audio experts was selected to respond to a Strengths, Weaknesses, Opportunities, and Threats (SWOT) validation questionnaire. Based on the SWOT analysis, the main strengths of the models included that they provide a systematic approach to auditory display design and that they integrate a wide variety of knowledge sources in a concise manner. The main weaknesses of the models included the lack of a structured process for amending the models with new principles, some branches were not considered parallel or completely distinct, and lack of guidance on selecting interface sounds. The main opportunity identified by the experts was the ability of the models to provide a seminal body of knowledge that can be used for building and validating auditory display designs. The main threats identified by the experts were that users may not know where to start and end with each model, the models may not provide comprehensive coverage of all uses of auditory displays, and the models may act as a restrictive influence on designers or they may be used inappropriately. Based on the SWOT analysis results, several changes were made to the models prior to the empirical studies. Two empirical evaluation studies were conducted to test the theorized design principles derived from the revised models. The first study focused on assessing the utility of audio cues to train a temporal pacing task and the second study combined both temporal (i.e., pace) and spatial audio information, with a focus on examining integration issues. In the pace study, there were four different auditory conditions used for training pace: 1) a metronome, 2) non-spatial auditory earcons, 3) a spatialized auditory earcon, and 4) no audio cues for pace training. Sixty-eight people participated in the study. A pre- post between subjects experimental design was used, with eight training trials. The measure used for assessing pace performance was the average deviation from a predetermined desired pace. The results demonstrated that a metronome was not effective in training participants to maintain a desired pace, while, spatial and non-spatial earcons were effective strategies for pace training. Moreover, an examination of post-training performance as compared to pre-training suggested some transfer of learning. Design guidelines were extracted for integrating auditory cues for pace training tasks in virtual environments. In the second empirical study, combined temporal (pacing) and spatial (location of entities within the environment) information were presented. There were three different spatialization conditions used: 1) high fidelity using subjective selection of a best-fit head related transfer function, 2) low fidelity using a generalized head-related transfer function, and 3) no spatialization. A pre- post between subjects experimental design was used, with eight training trials. The performance measures were average deviation from desired pace and time and accuracy to complete the task. The results of the second study demonstrated that temporal, non-spatial auditory cues were effective in influencing pace while other cues were present. On the other hand, spatialized auditory cues did not result in significantly faster task completion. Based on these results, a set of design guidelines was proposed that can be used to direct the integration of spatial and temporal auditory cues for supporting training tasks in virtual environments. Taken together, the developed models and the associated guidelines provided a theoretical foundation from which to direct user-centered design of auditory interfaces
    • …
    corecore