73 research outputs found

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Efficient Sparse Coding in Early Sensory Processing: Lessons from Signal Recovery

    Get PDF
    Sensory representations are not only sparse, but often overcomplete: coding units significantly outnumber the input units. For models of neural coding this overcompleteness poses a computational challenge for shaping the signal processing channels as well as for using the large and sparse representations in an efficient way. We argue that higher level overcompleteness becomes computationally tractable by imposing sparsity on synaptic activity and we also show that such structural sparsity can be facilitated by statistics based decomposition of the stimuli into typical and atypical parts prior to sparse coding. Typical parts represent large-scale correlations, thus they can be significantly compressed. Atypical parts, on the other hand, represent local features and are the subjects of actual sparse coding. When applied on natural images, our decomposition based sparse coding model can efficiently form overcomplete codes and both center-surround and oriented filters are obtained similar to those observed in the retina and the primary visual cortex, respectively. Therefore we hypothesize that the proposed computational architecture can be seen as a coherent functional model of the first stages of sensory coding in early vision

    Side information in robust principal component analysis: algorithms and applications

    Get PDF
    Dimensionality reduction and noise removal are fundamental machine learning tasks that are vital to artificial intelligence applications. Principal component analysis has long been utilised in computer vision to achieve the above mentioned goals. Recently, it has been enhanced in terms of robustness to outliers in robust principal component analysis. Both convex and non-convex programs have been developed to solve this new formulation, some with exact convergence guarantees. Its effectiveness can be witnessed in image and video applications ranging from image denoising and alignment to background separation and face recognition. However, robust principal component analysis is by no means perfect. This dissertation identifies its limitations, explores various promising options for improvement and validates the proposed algorithms on both synthetic and real-world datasets. Common algorithms approximate the NP-hard formulation of robust principal component analysis with convex envelopes. Though under certain assumptions exact recovery can be guaranteed, the relaxation margin is too big to be squandered. In this work, we propose to apply gradient descent on the Burer-Monteiro bilinear matrix factorisation to squeeze this margin given available subspaces. This non-convex approach improves upon conventional convex approaches both in terms of accuracy and speed. On the other hand, oftentimes there is accompanying side information when an observation is made. The ability to assimilate such auxiliary sources of data can ameliorate the recovery process. In this work, we investigate in-depth such possibilities for incorporating side information in restoring the true underlining low-rank component from gross sparse noise. Lastly, tensors, also known as multi-dimensional arrays, represent real-world data more naturally than matrices. It is thus advantageous to adapt robust principal component analysis to tensors. Since there is no exact equivalence between tensor rank and matrix rank, we employ the notions of Tucker rank and CP rank as our optimisation objectives. Overall, this dissertation carefully defines the problems when facing real-world computer vision challenges, extensively and impartially evaluates the state-of-the-art approaches, proposes novel solutions and provides sufficient validations on both simulated data and popular real-world datasets for various mainstream computer vision tasks.Open Acces

    eRPCAe^{\text{RPCA}}: Robust Principal Component Analysis for Exponential Family Distributions

    Full text link
    Robust Principal Component Analysis (RPCA) is a widely used method for recovering low-rank structure from data matrices corrupted by significant and sparse outliers. These corruptions may arise from occlusions, malicious tampering, or other causes for anomalies, and the joint identification of such corruptions with low-rank background is critical for process monitoring and diagnosis. However, existing RPCA methods and their extensions largely do not account for the underlying probabilistic distribution for the data matrices, which in many applications are known and can be highly non-Gaussian. We thus propose a new method called Robust Principal Component Analysis for Exponential Family distributions (eRPCAe^{\text{RPCA}}), which can perform the desired decomposition into low-rank and sparse matrices when such a distribution falls within the exponential family. We present a novel alternating direction method of multiplier optimization algorithm for efficient eRPCAe^{\text{RPCA}} decomposition. The effectiveness of eRPCAe^{\text{RPCA}} is then demonstrated in two applications: the first for steel sheet defect detection, and the second for crime activity monitoring in the Atlanta metropolitan area

    Dynamic Analysis of X-ray Angiography for Image-Guided Coronary Interventions

    Get PDF
    Percutaneous coronary intervention (PCI) is a minimally-invasive procedure for treating patients with coronary artery disease. PCI is typically performed with image guidance using X-ray angiograms (XA) in which coronary arter
    • …
    corecore