50 research outputs found

    Space-time coding for CDMA-based wireless communication systems

    Get PDF
    Thesis (Master)--Izmir Institute of Technology, Electronics and Communication Engineering, Izmir, 2002Includes bibliographical references (leaves: 72-75)Text in English; Abstract: Turkish and Englishx, 75 leavesMultiple transmit antennas giving rise to diversity (transmit diversity) have been shown to increase downlink (base station to the mobile) capacity in cellular systems.The third generation partnership project (3GPP) for WCDMA has chosen space time transmit diversity (STTD) as the open loop transmit diversity technique for two transmit antennas.On the other hand, the CDMA 2000 has chosen space time spreading (STS) and orthogonal transmit diversity (OTD) as the open loop transmit diversity.In addition to all the standardization aspects, proposed contributions such as space time coding assisted double spread rake receiver (STC-DS-RR) are exist.In this thesis, open loop transmit diversity techniques of 3GPP, CDMA 2000 and existing contributions are investigated.Their performances are compared as a means of biterror- rate (BER) versus signal-to-noise ratio (SNR)

    IRS-aided UAV for Future Wireless Communications: A Survey and Research Opportunities

    Full text link
    Both unmanned aerial vehicles (UAVs) and intelligent reflecting surfaces (IRS) are gaining traction as transformative technologies for upcoming wireless networks. The IRS-aided UAV communication, which introduces IRSs into UAV communications, has emerged in an effort to improve the system performance while also overcoming UAV communication constraints and issues. The purpose of this paper is to provide a comprehensive overview of IRSassisted UAV communications. First, we provide five examples of how IRSs and UAVs can be combined to achieve unrivaled potential in difficult situations. The technological features of the most recent relevant researches on IRS-aided UAV communications from the perspective of the main performance criteria, i.e., energy efficiency, security, spectral efficiency, etc. Additionally, previous research studies on technology adoption as machine learning algorithms. Lastly, some promising research directions and open challenges for IRS-aided UAV communication are presented

    Satellite power system: Concept development and evaluation program. Volume 3: Power transmission and reception. Technical summary and assessment

    Get PDF
    Efforts in the DOE/NASA concept development and evaluation program are discussed for the solar power satellite power transmission and reception system. A technical summary is provided together with a summary of system assessment activities. System options and system definition drivers are described. Major system assessment activities were in support of the reference system definition, solid state system studies, critical technology supporting investigations, and various system and subsystem tradeoffs. These activities are described together with reference system updates and alternative concepts for each of the subsystem areas. Conclusions reached as a result of the numerous analytical and experimental evaluations are presented. Remaining issues for a possible follow-on program are identified

    A NOISE ESTIMATION SCHEME FOR BLIND SPECTRUM SENSING USING EMD

    Get PDF
    The scarcity of spectral resources in wireless communications, due to a fixed frequency allocation policy, is a strong limitation to the increasing demand for higher data rates. One solution is to use underutilized spectrum. Cognitive Radio (CR) technologies identify transmission opportunities in unused channels and avoid interfering with primary users. The key enabling technology is the Spectrum Sensing (SS). Different SS techniques exist, but techniques that do not require knowledge of the signals (non-coherent) are preferred. Noise estimation plays an essential role in enhancing the performance of non-coherent spectrum sensors such as energy detectors. In this thesis, we present an energy detector based on the behavior of Empirical Mode Decomposition (EMD) towards vacant channels (noise-dominant). The energy trend from the EMD processed signal is used to determine the occupancy of a given band of interest. The performance of the proposed EMD-based detector is evaluated for different noise levels and sample sizes. Further, a comparison is carried out with conventional spectrum sensing techniques to validate the efficacy of the proposed detector and the results revealed that it outperforms the other sensing methods

    Multicarrier communication systems with low sensibility to nonlinear amplification

    Get PDF
    Actualment estem entrant a una nova era de la informació amb gran demanda de sistemes de comunicació sense fils. Nous serveis com dades i video requereixen transmissions fiables d'alta velocitat, fins i tot en escenaris d'alta mobilitat. A més a més, la dificultat d'assignar el limitat espectre radioelèctric juntament amb la necessitat d'incrementar el temps de vida de les bateries dels terminals mòbils, requereix el diseny de transceptors que usin la potència i l'ampla de banda disponibles de manera eficient. Les comunicacions multiportadora basades en OFDM són capaces de satisfer la majoria d'aquests requeriments. Però, entre altres reptes, reduir la sensibilitat a la amplificació no-lineal és un factor clau durant el diseny. En aquesta tesi doctoral s'analitza la sensibilitat dels sistemes multiportadora basats en OFDM a l'amplificació no-lineal i es consideren formes eficients per superar aquest problema. La tesi s'enfoca principalment al problema de reduir les fluctuacions de l'envolupant del senyal transmès. En aquest sentit es presenta també un estudi de les mètriques de l'envolupant del senyal, PAPR i CM. A més a més, basant-nos en l'anàlisis presentat es proposen noves tècniques per sistemes OFDM i MC-SS. Per MC-SS, també es tracta el diseny d'una tècnica de postprocessament en forma de detector multiusuari per canals no-lineals.Actualmente estamos entrando en una nueva era de la información donde se da una gran demanda de sistemas de comunicación inalámbricos. Nuevos servicios como datos y vídeo requieren transmisiones fiables de alta velocidad, incluso en escenarios de alta movilidad. Además, la dificultad de asignar el limitado espectro radioeléctrico junto con la necesidad de incrementar el tiempo de vida de las baterías de los terminales móviles, requiere el diseño de transceptores que usen eficientemente la potencia y el ancho de banda disponibles. Las comunicaciones multiportadora basadas en OFDM son capaces de satisfacer la mayoría de dichos requerimientos. Sin embargo, entre otros retos, reducir su sensibilidad a la amplificación no-lineal es un factor clave durante el diseño. En esta tesis se analiza la sensibilidad de los sistemas multiportadora basados en OFDM a la amplificación no-lineal y se consideran formas eficientes para superar dicho problema. La tesis se enfoca principalmente al problema de reducir las fluctuaciones de la envolvente. En este sentido también se presenta un estudio de las métricas de la señal, PAPR y CM. Además, basándonos en el análisis presentado se proponen nuevas técnicas para OFDM y MC-SS. Para MC-SS, también se trata el diseño de un detector multiusuario para canales no-lineales.We are now facing a new information age with high demand of wireless communication systems. New services such as data and video require achieving reliable high-speed transmissions even in high mobility scenarios. Moreover, the difficulty to allocate so many wireless communication systems in the limited frequency band in addition to the demand for long battery life requires designing spectrum and power efficient transceivers. Multicarrier communications based on OFDM are known to fulfill most of the requirements of such systems. However, among other challenges, reducing the sensitivity to nonlinear amplification has become a design key. In this thesis the sensitivity of OFDM-based multicarrier systems to nonlinear amplification is analyzed and efficient ways to overcome this problem are considered. The focus is mainly on the problem of reducing the envelope fluctuations. Therefore, a study of the signal metrics, namely PAPR and CM, is also presented. From the presented analysis, several new techniques for OFDM and MC-SS are proposed. For MC-SS, the design of a post-processing technique in the form of a multiuser detector for nonlinearly distorted MC-SS symbols is also addressed

    Cognitive Security Framework For Heterogeneous Sensor Network Using Swarm Intelligence

    Get PDF
    Rapid development of sensor technology has led to applications ranging from academic to military in a short time span. These tiny sensors are deployed in environments where security for data or hardware cannot be guaranteed. Due to resource constraints, traditional security schemes cannot be directly applied. Unfortunately, due to minimal or no communication security schemes, the data, link and the sensor node can be easily tampered by intruder attacks. This dissertation presents a security framework applied to a sensor network that can be managed by a cohesive sensor manager. A simple framework that can support security based on situation assessment is best suited for chaotic and harsh environments. The objective of this research is designing an evolutionary algorithm with controllable parameters to solve existing and new security threats in a heterogeneous communication network. An in-depth analysis of the different threats and the security measures applied considering the resource constrained network is explored. Any framework works best, if the correlated or orthogonal performance parameters are carefully considered based on system goals and functions. Hence, a trade-off between the different performance parameters based on weights from partially ordered sets is applied to satisfy application specific requirements and security measures. The proposed novel framework controls heterogeneous sensor network requirements,and balance the resources optimally and efficiently while communicating securely using a multi-objection function. In addition, the framework can measure the affect of single or combined denial of service attacks and also predict new attacks under both cooperative and non-cooperative sensor nodes. The cognitive intuition of the framework is evaluated under different simulated real time scenarios such as Health-care monitoring, Emergency Responder, VANET, Biometric security access system, and Battlefield monitoring. The proposed three-tiered Cognitive Security Framework is capable of performing situation assessment and performs the appropriate security measures to maintain reliability and security of the system. The first tier of the proposed framework, a crosslayer cognitive security protocol defends the communication link between nodes during denial-of-Service attacks by re-routing data through secure nodes. The cognitive nature of the protocol balances resources and security making optimal decisions to obtain reachable and reliable solutions. The versatility and robustness of the protocol is justified by the results obtained in simulating health-care and emergency responder applications under Sybil and Wormhole attacks. The protocol considers metrics from each layer of the network model to obtain an optimal and feasible resource efficient solution. In the second tier, the emergent behavior of the protocol is further extended to mine information from the nodes to defend the network against denial-of-service attack using Bayesian models. The jammer attack is considered the most vulnerable attack, and therefore simulated vehicular ad-hoc network is experimented with varied types of jammer. Classification of the jammer under various attack scenarios is formulated to predict the genuineness of the attacks on the sensor nodes using receiver operating characteristics. In addition to detecting the jammer attack, a simple technique of locating the jammer under cooperative nodes is implemented. This feature enables the network in isolating the jammer or the reputation of node is affected, thus removing the malicious node from participating in future routes. Finally, a intrusion detection system using `bait\u27 architecture is analyzed where resources is traded-off for the sake of security due to sensitivity of the application. The architecture strategically enables ant agents to detect and track the intruders threateningthe network. The proposed framework is evaluated based on accuracy and speed of intrusion detection before the network is compromised. This process of detecting the intrusion earlier helps learn future attacks, but also serves as a defense countermeasure. The simulated scenarios of this dissertation show that Cognitive Security Framework isbest suited for both homogeneous and heterogeneous sensor networks

    Development of Novel Independent Component Analysis Techniques and their Applications

    Get PDF
    Real world problems very often provide minimum information regarding their causes. This is mainly due to the system complexities and noninvasive techniques employed by scientists and engineers to study such systems. Signal and image processing techniques used for analyzing such systems essentially tend to be blind. Earlier, training signal based techniques were used extensively for such analyses. But many times either these training signals are not practicable to be availed by the analyzer or become burden on the system itself. Hence blind signal/image processing techniques are becoming predominant in modern real time systems. In fact, blind signal processing has become a very important topic of research and development in many areas, especially biomedical engineering, medical imaging, speech enhancement, remote sensing, communication systems, exploration seismology, geophysics, econometrics, data mining, sensor networks etc. Blind Signal Processing has three major areas: Blind Signal Separation and Extraction, Independent Component Analysis (ICA) and Multichannel Blind Deconvolution and Equalization. ICA technique has also been typically applied to the other two areas mentioned above. Hence ICA research with its wide range of applications is quite interesting and has been taken up as the central domain of the present work

    DOA Convergence of Unstructured Distributed Arrays with Time-varying and Space-varying Morphologies

    Get PDF
    This thesis mainly focuses on the research of the factors that influence the accuracy and efficiency of a UAV-based radio frequency (RF) and microwave data collection system. Swarming UAVs can be utilized to create the unstructured morphing antenna arrays that reduce aliasing and improve convergence in sub-space direction of arrival techniques. This thesis first reports on the ramifications of using unstructured antenna arrays based on sub-space techniques. This work evaluates the classical MUSIC algorithm and root-MUSIC algorithm, and Fourier domain root-MUSIC algorithm (FD Root-MUSIC). Compared to the MUSIC algorithm, the root-MUSIC algorithm avoids the search of spatial spectrum, reduces the computational complexity and improves the ability of real world applications. Then, this thesis comes up with the data model for the UAV swarming system. Based on the data model, this work examines the impact of UAV swarm density and heterogeneity on synthetic aperture DOA convergence. The synthetic aperture is derived from the displacement of distributed UAVs operating in a sparse volumetric swarm. Heterogeneity arises from the changing orientation of a UAV’s antenna and receiving pattern function as it swarms in the distributed cluster of UAVs. This alters the UAVs’ antenna pattern functions over time and alters the convergence and overall performance properties of vector-space direction of arrival techniques. This work evaluates the impact of the swarm density and orientation in this framework and studies the convergence and error using MUSIC algorithm. This work also discusses the impact of different type of errors introduced from UAV swarming. Furthermore, this thesis examines the DOA convergence performance of location-varying volumetric random array using MUSIC algorithm. Simulation and measurements for up to sixteen elements on a thirty-two-location test platform are provided and comparisons are made to benchmark their performance with theoretical expectations. MATLAB simulation indicates that the volumetric random arrays can be applied in a very noisy condition by increasing the iterations and multiplying the MUSIC spectrum and experimental observations demonstrate that the system accurately capture the azimuthal and elevation angles of the source. At last, this thesis investigates and designs the tunable FM band monopole and loop antennas to locate the FM broadcasting stations. The wavelength of the FM band is around three meters. This work uses lumped elements and meandering antenna structure technologies to reduce the antenna size and match the antenna. This work also uses the varactor diodes to tune the antenna. However, the antenna becomes electrically small and the antenna gain is so low that it cannot detect the FM signal from the local FM broadcasting stations
    corecore