32,919 research outputs found

    A modified multi-class association rule for text mining

    Get PDF
    Classification and association rule mining are significant tasks in data mining. Integrating association rule discovery and classification in data mining brings us an approach known as the associative classification. One common shortcoming of existing Association Classifiers is the huge number of rules produced in order to obtain high classification accuracy. This study proposes s a Modified Multi-class Association Rule Mining (mMCAR) that consists of three procedures; rule discovery, rule pruning and group-based class assignment. The rule discovery and rule pruning procedures are designed to reduce the number of classification rules. On the other hand, the group-based class assignment procedure contributes in improving the classification accuracy. Experiments on the structured and unstructured text datasets obtained from the UCI and Reuters repositories are performed in order to evaluate the proposed Association Classifier. The proposed mMCAR classifier is benchmarked against the traditional classifiers and existing Association Classifiers. Experimental results indicate that the proposed Association Classifier, mMCAR, produced high accuracy with a smaller number of classification rules. For the structured dataset, the mMCAR produces an average of 84.24% accuracy as compared to MCAR that obtains 84.23%. Even though the classification accuracy difference is small, the proposed mMCAR uses only 50 rules for the classification while its benchmark method involves 60 rules. On the other hand, mMCAR is at par with MCAR when unstructured dataset is utilized. Both classifiers produce 89% accuracy but mMCAR uses less number of rules for the classification. This study contributes to the text mining domain as automatic classification of huge and widely distributed textual data could facilitate the text representation and retrieval processes

    QCBA: Postoptimization of Quantitative Attributes in Classifiers based on Association Rules

    Full text link
    The need to prediscretize numeric attributes before they can be used in association rule learning is a source of inefficiencies in the resulting classifier. This paper describes several new rule tuning steps aiming to recover information lost in the discretization of numeric (quantitative) attributes, and a new rule pruning strategy, which further reduces the size of the classification models. We demonstrate the effectiveness of the proposed methods on postoptimization of models generated by three state-of-the-art association rule classification algorithms: Classification based on Associations (Liu, 1998), Interpretable Decision Sets (Lakkaraju et al, 2016), and Scalable Bayesian Rule Lists (Yang, 2017). Benchmarks on 22 datasets from the UCI repository show that the postoptimized models are consistently smaller -- typically by about 50% -- and have better classification performance on most datasets

    Software defect prediction based on association rule classification.

    Get PDF
    In software defect prediction, predictive models are estimated based on various code attributes to assess the likelihood of software modules containing errors. Many classification methods have been suggested to accomplish this task. However, association based classification methods have not been investigated so far in this context. This paper assesses the use of such a classification method, CBA2, and compares it to other rule based classification methods. Furthermore, we investigate whether rule sets generated on data from one software project can be used to predict defective software modules in other, similar software projects. It is found that applying the CBA2 algorithm results in both accurate and comprehensible rule sets.Software defect prediction; Association rule classification; CBA2; AUC;

    Automatic correction of part-of-speech corpora

    Get PDF
    In this study a simple method for automatic correction of part-ofspeech corpora is presented, which works as follows: Initially two or more already available part-of-speech taggers are applied on the data. Then a sample of differing outputs is taken to train a classifier to predict for each difference which of the taggers (if any) delivered the correct output. As classifiers we employed instance-based learning, a C4.5 decision tree and a Bayesian classifier. Their performances ranged from 59.1 % to 67.3 %. Training on the automatically corrected data finally lead to significant improvements in tagger performance
    • …
    corecore