56 research outputs found

    Linear Cryptanalysis Using Multiple Linear Approximations

    Get PDF
    In this article, the theory of multidimensional linear attacks on block ciphers is developed and the basic attack algorithms and their complexity estimates are presented. As an application the multidimensional linear distinguisher derived by Cho for the block cipher PRESENT is discussed in detail

    Joint Data and Key Distribution of Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic and Its Impact to Data Complexity

    Get PDF
    The power of a statistical attack is inversely proportional to the number of plaintexts needed to recover information on the encryption key. By analyzing the distribution of the random variables involved in the attack, cryptographers aim to provide a good estimate of the data complexity of the attack. In this paper, we analyze the hypotheses made in simple, multiple, and multidimensional linear attacks that use either non-zero or zero correlations, and provide more accurate estimates of the data complexity of these attacks. This is achieved by taking, for the first time, into consideration the key variance of the statistic for both the right and wrong keys. For the family of linear attacks considered in this paper, we differentiate between the attacks which are performed in the known-plaintext and those in the distinct-known-plaintext model

    Multidimensional Linear Cryptanalysis of Feistel Ciphers

    Get PDF
    This paper presents new generic attacks on Feistel ciphers that incorporate the key addition at the input of the non-invertible round function only. This feature leads to a specific vulnerability that can be exploited using multidimensional linear cryptanalysis. More specifically, our approach involves using key-independent linear trails so that the distribution of a combination of the plaintext and ciphertext can be computed. This makes it possible to use the likelihood-ratio test as opposed to the χ2 test. We provide theoretical estimates of the cost of our generic attacks and verify these experimentally by applying the attacks to CAST-128 and LOKI91. The theoretical and experimental findings demonstrate that the proposed attacks lead to significant reductions in data-complexity in several interesting cases

    Multivariate Profiling of Hulls for Linear Cryptanalysis

    Get PDF
    Extensions of linear cryptanalysis making use of multiple approximations, such as multiple and multidimensional linear cryptanalysis, are an important tool in symmetric-key cryptanalysis, among others being responsible for the best known attacks on ciphers such as Serpent and present. At CRYPTO 2015, Huang et al. provided a refined analysis of the key-dependent capacity leading to a refined key equivalence hypothesis, however at the cost of additional assumptions. Their analysis was extended by Blondeau and Nyberg to also cover an updated wrong key randomization hypothesis, using similar assumptions. However, a recent result by Nyberg shows the equivalence of linear dependence and statistical dependence of linear approximations, which essentially invalidates a crucial assumption on which all these multidimensional models are based. In this paper, we develop a model for linear cryptanalysis using multiple linearly independent approximations which takes key-dependence into account and complies with Nyberg’s result. Our model considers an arbitrary multivariate joint distribution of the correlations, and in particular avoids any assumptions regarding normality. The analysis of this distribution is then tailored to concrete ciphers in a practically feasible way by combining a signal/noise decomposition approach for the linear hulls with a profiling of the actual multivariate distribution of the signal correlations for a large number of keys, thereby entirely avoiding assumptions regarding the shape of this distribution. As an application of our model, we provide an attack on 26 rounds of present which is faster and requires less data than previous attacks, while using more realistic assumptions and far fewer approximations. We successfully extend the attack to present the first 27-round attack which takes key-dependence into account

    Improving the key recovery in Linear Cryptanalysis: An application to PRESENT

    Get PDF
    International audienceLinear cryptanalysis is widely known as one of the fundamental tools for the crypanalysis of block ciphers. Over the decades following its first introduction by Matsui in [Ma94a], many different extensions and improvements have been proposed. One of them is [CSQ07], where Collard et al. use the Fast Fourier Transform (FFT) to accelerate the parity computations which are required to perform a linear key recovery attack. Modified versions of this technique have been introduced in order to adapt it to the requirements of several dedicated linear attacks. This work provides a model which extends and improves these different contributions and allows for a general expression of the time and memory complexities that are achieved. The potential of this general approach will then be illustrated with new linear attacks on reduced-round PRESENT, which is a very popular and widely studied lightweight cryptography standard. In particular, we show an attack on 26 or 27-round PRESENT-80 which has better time and data complexity than any previously known attacks, as well as the first attack on 28-round PRESENT-128

    Improving Key-Recovery in Linear Attacks: Application to 28-Round PRESENT

    Get PDF
    International audienceLinear cryptanalysis is one of the most important tools in usefor the security evaluation of symmetric primitives. Many improvementsand refinements have been published since its introduction, and manyapplications on different ciphers have been found. Among these upgrades,Collard et al. proposed in 2007 an acceleration of the key-recovery partof Algorithm 2 for last-round attacks based on the FFT.In this paper we present a generalized, matrix-based version of the pre-vious algorithm which easily allows us to take into consideration an ar-bitrary number of key-recovery rounds. We also provide efficient variantsthat exploit the key-schedule relations and that can be combined withmultiple linear attacks.Using our algorithms we provide some new cryptanalysis on PRESENT,including, to the best of our knowledge, the first attack on 28 rounds

    Nonlinear cryptanalysis of reduced-round Serpent and metaheuristic search for S-box approximations.

    Get PDF
    We utilise a simulated annealing algorithm to find several nonlinear approximations to various S-boxes which can be used to replace the linear approximations in the outer rounds of existing attacks. We propose three variants of a new nonlinear cryptanalytic algorithm which overcomes the main issues that prevented the use of nonlinear approximations in previous research, and we present the statistical frameworks for calculating the complexity of each version. We present new attacks on 11-round Serpent with better data complexity than any other known-plaintext or chosen-plaintext attack, and with the best overall time complexity for a 256-bit key

    Quantum Speed-Up for Multidimensional (Zero Correlation) Linear Distinguishers

    Get PDF
    This paper shows how to achieve a quantum speed-up for multidimensional (zero correlation) linear distinguishers. A previous work by Kaplan et al. has already shown a quantum quadratic speed-up for one-dimensional linear distinguishers. However, classical linear cryptanalysis often exploits multidimensional approximations to achieve more efficient attacks, and in fact it is highly non-trivial whether Kaplan et al.\u27s technique can be extended into the multidimensional case. To remedy this, we investigate a new quantum technique to speed-up multidimensional linear distinguishers. Firstly, we observe that there is a close relationship between the subroutine of Simon\u27s algorithm and linear correlations via Fourier transform. Specifically, a slightly modified version of Simon\u27s subroutine, which we call Correlation Extraction Algorithm (CEA), can be used to speed-up multidimensional linear distinguishers. CEA also leads to a speed-up for multidimensional zero correlation distinguishers, as well as some integral distinguishers through the correspondence of zero correlation and integral properties shown by Bogdanov et al.~and Sun et al. Furthermore, we observe possibility of a more than quadratic speed-ups for some special types of integral distinguishers when multiple integral properties exist. Especially, we show a single-query distinguisher on a 4-bit cell SPN cipher with the same integral property as 2.5-round AES. Our attacks are the first to observe such a speed-up for classical cryptanalytic techniques without relying on hidden periods or shifts. By replacing the Hadamard transform in CEA with the general quantum Fourier transform, our technique also speeds-up generalized linear distinguishers on an arbitrary finite abelian group
    • 

    corecore