616 research outputs found

    Improving accuracy and efficiency of mutual information for multi-modal retinal image registration using adaptive probability density estimation

    Get PDF
    Mutual information (MI) is a popular similarity measure for performing image registration between different modalities. MI makes a statistical comparison between two images by computing the entropy from the probability distribution of the data. Therefore, to obtain an accurate registration it is important to have an accurate estimation of the true underlying probability distribution. Within the statistics literature, many methods have been proposed for finding the 'optimal' probability density, with the aim of improving the estimation by means of optimal histogram bin size selection. This provokes the common question of how many bins should actually be used when constructing a histogram. There is no definitive answer to this. This question itself has received little attention in the MI literature, and yet this issue is critical to the effectiveness of the algorithm. The purpose of this paper is to highlight this fundamental element of the MI algorithm. We present a comprehensive study that introduces methods from statistics literature and incorporates these for image registration. We demonstrate this work for registration of multi-modal retinal images: colour fundus photographs and scanning laser ophthalmoscope images. The registration of these modalities offers significant enhancement to early glaucoma detection, however traditional registration techniques fail to perform sufficiently well. We find that adaptive probability density estimation heavily impacts on registration accuracy and runtime, improving over traditional binning techniques. © 2013 Elsevier Ltd

    Enhanced retinal image registration accuracy using expectation maximisation and variable bin-sized mutual information

    Get PDF
    While retinal images (RI) assist in the diagnosis of various eye conditions and diseases such as glaucoma and diabetic retinopathy, their innate features including low contrast homogeneous and nonuniformly illuminated regions, present a particular challenge for retinal image registration (RIR). Recently, the hybrid similarity measure, Expectation Maximization for Principal Component Analysis with Mutual Information (EMPCA-MI) has been proposed for RIR. This paper investigates incorporating various fixed and adaptive bin size selection strategies to estimate the probability distribution in the mutual information (MI) stage of EMPCA-MI, and analyses their corresponding effect upon RIR performance. Experimental results using a clinical mono-modal RI dataset confirms that adaptive bin size selection consistently provides both lower RIR errors and superior robustness compared to the empirically determined fixed bin sizes

    Multimodal retinal imaging: Improving accuracy and efficiency of image registration using Mutual Information

    Get PDF
    This thesis addresses the challenging task of multi-modal image registration. Registration is often required in a number of applications, whereby two images are aligned to give matching correspondence between the features in each image. Such techniques have become popular in many different fields, especially in medical imaging. Multi-modal registration would allow for anatomical structure to be studied concurrently in both modalities, providing the clinician with a greater insight of the patient's condition. Glaucoma is a serious condition that damages the optic nerve progressively, leading to irreversible blindness. The disease can be treated so to prevent any further infection, however it can not be reversed. Therefore it is paramount that the disease is detected in the early stages so to minimise the affect of the condition. The work in this thesis focuses on two particular imaging modalities: colour fundus photographs and scanning laser ophthalmoscope images. Both images are captured from the human eye and show the appearance and reflectivity of the retina respectively. Registration of these two modalities would significantly improve demarcation and monitoring of the optic nerve head, a crucial stage for glaucoma diagnosis. In recent years, Mutual Information has become a popular technique used to perform multi-modal registration. This thesis provides a comprehensive overview of the algorithm. Firstly, an investigation is performed that shows how probability estimation can improve the algorithm performance. Secondly, the weaknesses of the current technique are revealed and so a novel solution is proposed that overcomes these problems. Finally, the proposed solution is incorporated in a non-rigid registration scheme that provides excellent registration accuracy for our intended application

    Domain Generalization for Medical Image Analysis: A Survey

    Full text link
    Medical Image Analysis (MedIA) has become an essential tool in medicine and healthcare, aiding in disease diagnosis, prognosis, and treatment planning, and recent successes in deep learning (DL) have made significant contributions to its advances. However, DL models for MedIA remain challenging to deploy in real-world situations, failing for generalization under the distributional gap between training and testing samples, known as a distribution shift problem. Researchers have dedicated their efforts to developing various DL methods to adapt and perform robustly on unknown and out-of-distribution data distributions. This paper comprehensively reviews domain generalization studies specifically tailored for MedIA. We provide a holistic view of how domain generalization techniques interact within the broader MedIA system, going beyond methodologies to consider the operational implications on the entire MedIA workflow. Specifically, we categorize domain generalization methods into data-level, feature-level, model-level, and analysis-level methods. We show how those methods can be used in various stages of the MedIA workflow with DL equipped from data acquisition to model prediction and analysis. Furthermore, we include benchmark datasets and applications used to evaluate these approaches and analyze the strengths and weaknesses of various methods, unveiling future research opportunities

    Advanced retinal imaging: Feature extraction, 2-D registration, and 3-D reconstruction

    Get PDF
    In this dissertation, we have studied feature extraction and multiple view geometry in the context of retinal imaging. Specifically, this research involves three components, i.e., feature extraction, 2-D registration, and 3-D reconstruction. First, the problem of feature extraction is investigated. Features are significantly important in motion estimation techniques because they are the input to the algorithms. We have proposed a feature extraction algorithm for retinal images. Bifurcations/crossovers are used as features. A modified local entropy thresholding algorithm based on a new definition of co-occurrence matrix is proposed. Then, we consider 2-D retinal image registration which is the problem of the transformation of 2-D/2-D. Both linear and nonlinear models are incorporated to account for motions and distortions. A hybrid registration method has been introduced in order to take advantages of both feature-based and area-based methods have offered along with relevant decision-making criteria. Area-based binary mutual information is proposed or translation estimation. A feature-based hierarchical registration technique, which involves the affine and quadratic transformations, is developed. After that, a 3-D retinal surface reconstruction issue has been addressed. To generate a 3-D scene from 2-D images, a camera projection or transformations of 3-D/2-D techniques have been investigated. We choose an affine camera to characterize for 3-D retinal reconstruction. We introduce a constrained optimization procedure which incorporates a geometrically penalty function and lens distortion into the cost function. The procedure optimizes all of the parameters, camera's parameters, 3-D points, the physical shape of human retina, and lens distortion, simultaneously. Then, a point-based spherical fitting method is introduced. The proposed retinal imaging techniques will pave the path to a comprehensive visual 3-D retinal model for many medical applications

    Histopathological image analysis : a review

    Get PDF
    Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe
    • …
    corecore