19,210 research outputs found

    Dimensionality Reduction of Quality Objectives for Web Services Design Modularization

    Full text link
    With the increasing use of service-oriented Architecture (SOA) in new software development, there is a growing and urgent need to improve current practice in service-oriented design. To improve the design of Web services, the search for Web services interface modularization solutions deals, in general, with a large set of conflicting quality metrics. Deciding about which and how the quality metrics are used to evaluate generated solutions are always left to the designer. Some of these objectives could be correlated or conflicting. In this paper, we propose a dimensionality reduction approach based on Non-dominated Sorting Genetic Algorithm (NSGA-II) to address the Web services re-modularization problem. Our approach aims at finding the best-reduced set of objectives (e.g. quality metrics) that can generate near optimal Web services modularization solutions to fix quality issues in Web services interface. The algorithm starts with a large number of interface design quality metrics as objectives (e.g. coupling, cohesion, number of ports, number of port types, and number of antipatterns) that are reduced based on the nonlinear correlation information entropy (NCIE).The statistical analysis of our results, based on a set of 22 real world Web services provided by Amazon and Yahoo, confirms that our dimensionality reduction Web services interface modularization approach reduced significantly the number of objectives on several case studies to a minimum of 2 objectives and performed significantly better than the state-of-the-art modularization techniques in terms of generating well-designed Web services interface for users.Master of ScienceSoftware Engineering, College of Engineering & Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/145687/1/Thesis Report_Hussein Skaf.pdfDescription of Thesis Report_Hussein Skaf.pdf : Thesi

    UK utility data integration: overcoming schematic heterogeneity

    Get PDF
    In this paper we discuss syntactic, semantic and schematic issues which inhibit the integration of utility data in the UK. We then focus on the techniques employed within the VISTA project to overcome schematic heterogeneity. A Global Schema based architecture is employed. Although automated approaches to Global Schema definition were attempted the heterogeneities of the sector were too great. A manual approach to Global Schema definition was employed. The techniques used to define and subsequently map source utility data models to this schema are discussed in detail. In order to ensure a coherent integrated model, sub and cross domain validation issues are then highlighted. Finally the proposed framework and data flow for schematic integration is introduced

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    • …
    corecore