224 research outputs found

    Sub-Nanosecond Time of Flight on Commercial Wi-Fi Cards

    Full text link
    Time-of-flight, i.e., the time incurred by a signal to travel from transmitter to receiver, is perhaps the most intuitive way to measure distances using wireless signals. It is used in major positioning systems such as GPS, RADAR, and SONAR. However, attempts at using time-of-flight for indoor localization have failed to deliver acceptable accuracy due to fundamental limitations in measuring time on Wi-Fi and other RF consumer technologies. While the research community has developed alternatives for RF-based indoor localization that do not require time-of-flight, those approaches have their own limitations that hamper their use in practice. In particular, many existing approaches need receivers with large antenna arrays while commercial Wi-Fi nodes have two or three antennas. Other systems require fingerprinting the environment to create signal maps. More fundamentally, none of these methods support indoor positioning between a pair of Wi-Fi devices without~third~party~support. In this paper, we present a set of algorithms that measure the time-of-flight to sub-nanosecond accuracy on commercial Wi-Fi cards. We implement these algorithms and demonstrate a system that achieves accurate device-to-device localization, i.e. enables a pair of Wi-Fi devices to locate each other without any support from the infrastructure, not even the location of the access points.Comment: 14 page

    Puolivalvottu WLAN-radiokarttojen oppiminen

    Get PDF
    In this thesis a manifold learning method is applied to the problem of WLAN positioning and automatic radio map creation. Due to the nature of WLAN signal strength measurements, a signal map created from raw measurements results in non-linear distance relations between measurement points. These signal strength vectors reside in a high-dimensioned coordinate system. With the help of the so called Isomap-algorithm the dimensionality of this map can be reduced, and thus more easily processed. By embedding position-labeled strategic key points, we can automatically adjust the mapping to match the surveyed environment. The environment is thus learned in a semi-supervised way; gathering training points and embedding them in a two-dimensional manifold gives us a rough mapping of the measured environment. After a calibration phase, where the labeled key points in the training data are used to associate coordinates in the manifold representation with geographical locations, we can perform positioning using the adjusted map. This can be achieved through a traditional supervised learning process, which in our case is a simple nearest neighbors matching of a sampled signal strength vector. We deployed this system in two locations in the Kumpula campus in Helsinki, Finland. Results indicate that positioning based on the learned radio map can achieve good accuracy, especially in hallways or other areas in the environment where the WLAN signal is constrained by obstacles such as walls.Työssä sovelletaan monisto-oppimismenetelmää WLAN-paikannuksen ja automaattisen radiokartan luonnin ongelmaan. WLAN-signaalivoimakkuuksien mittausten luonteen takia käsittelemättömät mittaukset aiheuttavat epälineaarisia suhteita radiokartan mittauspisteiden välille. Nämä signaalivoimakkuusvektorit sijaitsevat avaruudessa jolla on korkea ulottuvuus. Niin kutsutun Isomap-algoritmin avulla kartan ulottuvuuksia voidaan karsia, jolloin sitä on helpompi työstää. Upottamalla karttaan merkittyjä avainpisteitä, se voidaan automaattisesti säätää vastaamaan mitattua ympäristöä. Ympäristö siis opitaan puolivalvotusti; keräämällä harjoituspisteitä ja upottamalla ne kaksiulotteiseen monistoon saadaan karkea kartta ympäristöstä. Kalibrointivaiheen jälkeen, jossa merkittyjä avainpisteitä käytetään yhdistämään moniston koordinaatit maantieteellisiin kohteisiin, voidaan suorittaa paikannusta säädetyn kartan avulla. Tämä voidaan tehdä perinteisen valvotun oppimisen avulla, joka tässä tapauksessa on yksinkertainen lähimmän naapurin löytäminen mitatulle signaalivoimakkuusvektorille. Järjestelmää kokeiltiin kahdessa paikassa Kumpulan kampuksessa Helsingissä. Tulokset viittaavat siihen että opitun radiokartan avulla paikannus voi saavuttaa hyvän tarkkuuden, etenkin käytävissä ja muissa tiloissa jossa esteet kuten seinät rajoittavat WLAN-signaalia

    Position and Orientation Estimation through Millimeter Wave MIMO in 5G Systems

    Get PDF
    Millimeter wave signals and large antenna arrays are considered enabling technologies for future 5G networks. While their benefits for achieving high-data rate communications are well-known, their potential advantages for accurate positioning are largely undiscovered. We derive the Cram\'{e}r-Rao bound (CRB) on position and rotation angle estimation uncertainty from millimeter wave signals from a single transmitter, in the presence of scatterers. We also present a novel two-stage algorithm for position and rotation angle estimation that attains the CRB for average to high signal-to-noise ratio. The algorithm is based on multiple measurement vectors matching pursuit for coarse estimation, followed by a refinement stage based on the space-alternating generalized expectation maximization algorithm. We find that accurate position and rotation angle estimation is possible using signals from a single transmitter, in either line-of- sight, non-line-of-sight, or obstructed-line-of-sight conditions.Comment: The manuscript has been revised, and increased from 27 to 31 pages. Also, Fig.2, Fig. 10 and Table I are adde

    A Meta-Review of Indoor Positioning Systems

    Get PDF
    An accurate and reliable Indoor Positioning System (IPS) applicable to most indoor scenarios has been sought for many years. The number of technologies, techniques, and approaches in general used in IPS proposals is remarkable. Such diversity, coupled with the lack of strict and verifiable evaluations, leads to difficulties for appreciating the true value of most proposals. This paper provides a meta-review that performed a comprehensive compilation of 62 survey papers in the area of indoor positioning. The paper provides the reader with an introduction to IPS and the different technologies, techniques, and some methods commonly employed. The introduction is supported by consensus found in the selected surveys and referenced using them. Thus, the meta-review allows the reader to inspect the IPS current state at a glance and serve as a guide for the reader to easily find further details on each technology used in IPS. The analyses of the meta-review contributed with insights on the abundance and academic significance of published IPS proposals using the criterion of the number of citations. Moreover, 75 works are identified as relevant works in the research topic from a selection of about 4000 works cited in the analyzed surveys

    Indoor Localization Accuracy Estimation from Fingerprint Data

    Get PDF
    The demand for indoor localization services has led to the development of techniques that create a Fingerprint Map (FM) of sensor signals (e.g., magnetic, Wi-Fi, bluetooth) at designated positions in an indoor space and then use FM as a reference for subsequent localization tasks. With such an approach, it is crucial to assess the quality of the FM before deployment, in a manner disregarding data origin and at any location of interest, so as to provide deployment staff with the information on the quality of localization. Even though FM-based localization algorithms usually provide accuracy estimates during system operation (e.g., visualized as uncertainty circle or ellipse around the user location), they do not provide any information about the expected accuracy before the actual deployment of the localization service. In this paper, we develop a novel frame-work for quality assessment on arbitrary FMs coined ACCES. Our framework comprises a generic interpolation method using Gaussian Processes (GP), upon which a navigability score at any location is derived using the Cramer-Rao Lower Bound (CRLB). Our approach does not rely on the underlying physical model of the fingerprint data. Our extensive experimental study with magnetic FMs, comparing empirical localization accuracy against derived bounds, demonstrates that the navigability score closely matches the accuracy variations users experience.© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. A. Nikitin, C. Laoudias, G. Chatzimilioudis, P. Karras and D. Zeinalipour-Yazti, "Indoor Localization Accuracy Estimation from Fingerprint Data," 2017 18th IEEE International Conference on Mobile Data Management (MDM), Daejeon, 2017, pp. 196-205. doi: 10.1109/MDM.2017.3

    Data Cleansing for Indoor Positioning Wi-Fi Fingerprinting Datasets

    Get PDF
    Wearable and IoT devices requiring positioning and localisation services grow in number exponentially every year. This rapid growth also produces millions of data entries that need to be pre-processed prior to being used in any indoor positioning system to ensure the data quality and provide a high Quality of Service (QoS) to the end-user. In this paper, we offer a novel and straightforward data cleansing algorithm for WLAN fingerprinting radio maps. This algorithm is based on the correlation among fingerprints using the Received Signal Strength (RSS) values and the Access Points (APs)'s identifier. We use those to compute the correlation among all samples in the dataset and remove fingerprints with low level of correlation from the dataset. We evaluated the proposed method on 14 independent publicly-available datasets. As a result, an average of 14% of fingerprints were removed from the datasets. The 2D positioning error was reduced by 2.7% and 3D positioning error by 5.3% with a slight increase in the floor hit rate by 1.2% on average. Consequently, the average speed of position prediction was also increased by 14%.acceptedVersionPeer reviewe
    corecore