2,931 research outputs found

    How is Gaze Influenced by Image Transformations? Dataset and Model

    Full text link
    Data size is the bottleneck for developing deep saliency models, because collecting eye-movement data is very time consuming and expensive. Most of current studies on human attention and saliency modeling have used high quality stereotype stimuli. In real world, however, captured images undergo various types of transformations. Can we use these transformations to augment existing saliency datasets? Here, we first create a novel saliency dataset including fixations of 10 observers over 1900 images degraded by 19 types of transformations. Second, by analyzing eye movements, we find that observers look at different locations over transformed versus original images. Third, we utilize the new data over transformed images, called data augmentation transformation (DAT), to train deep saliency models. We find that label preserving DATs with negligible impact on human gaze boost saliency prediction, whereas some other DATs that severely impact human gaze degrade the performance. These label preserving valid augmentation transformations provide a solution to enlarge existing saliency datasets. Finally, we introduce a novel saliency model based on generative adversarial network (dubbed GazeGAN). A modified UNet is proposed as the generator of the GazeGAN, which combines classic skip connections with a novel center-surround connection (CSC), in order to leverage multi level features. We also propose a histogram loss based on Alternative Chi Square Distance (ACS HistLoss) to refine the saliency map in terms of luminance distribution. Extensive experiments and comparisons over 3 datasets indicate that GazeGAN achieves the best performance in terms of popular saliency evaluation metrics, and is more robust to various perturbations. Our code and data are available at: https://github.com/CZHQuality/Sal-CFS-GAN

    An audiovisual attention model for natural conversation scenes

    No full text
    International audienceClassical visual attention models neither consider social cues, such as faces, nor auditory cues, such as speech. However, faces are known to capture visual attention more than any other visual features, and recent studies showed that speech turn-taking affects the gaze of non-involved viewers. In this paper, we propose an audiovisual saliency model able to predict the eye movements of observers viewing other people having a conversation. Thanks to a speaker diarization algorithm, our audiovisual saliency model increases the saliency of the speakers compared to the addressees. We evaluated our model with eye-tracking data, and found that it significantly outperforms visual attention models using an equal and constant saliency value for all faces

    Audiovisual Saliency Prediction in Uncategorized Video Sequences based on Audio-Video Correlation

    Full text link
    Substantial research has been done in saliency modeling to develop intelligent machines that can perceive and interpret their surroundings. But existing models treat videos as merely image sequences excluding any audio information, unable to cope with inherently varying content. Based on the hypothesis that an audiovisual saliency model will be an improvement over traditional saliency models for natural uncategorized videos, this work aims to provide a generic audio/video saliency model augmenting a visual saliency map with an audio saliency map computed by synchronizing low-level audio and visual features. The proposed model was evaluated using different criteria against eye fixations data for a publicly available DIEM video dataset. The results show that the model outperformed two state-of-the-art visual saliency models.Comment: 9 pages, 2 figures, 4 table

    The importance of time in visual attention models

    Get PDF
    Predicting visual attention is a very active field in the computer vision community. Visual attention is a mechanism of the visual system that can select relevant areas within a scene. Models for saliency prediction are intended to automatically predict which regions are likely to be attended by a human observer. Traditionally, ground truth saliency maps are built using only the spatial position of the fixation points, being these fixation points the locations where an observer fixates the gaze when viewing a scene. In this work we explore encoding the temporal information as well, and assess it in the application of prediction saliency maps with deep neural networks. It has been observed that the later fixations in a scanpath are usually selected randomly during visualization, specially in those images with few regions of interest. Therefore, computer vision models have difficulties learning to predict them. In this work, we explore a temporal weighting over the saliency maps to better cope with this random behaviour. The newly proposed saliency representation assigns different weights depending on the position in the sequence of gaze fixations, giving more importance to early timesteps than later ones. We used this maps to train MLNet, a state of the art for predicting saliency maps. MLNet predictions were evaluated and compared to the results obtained when the model has been trained using traditional saliency maps.Finally, we show how the temporally weighted saliency maps brought some improvement when used to weight the visual features in an image retrieval tas
    • …
    corecore