1,430 research outputs found

    Generative Adversarial Networks (GANs): Challenges, Solutions, and Future Directions

    Full text link
    Generative Adversarial Networks (GANs) is a novel class of deep generative models which has recently gained significant attention. GANs learns complex and high-dimensional distributions implicitly over images, audio, and data. However, there exists major challenges in training of GANs, i.e., mode collapse, non-convergence and instability, due to inappropriate design of network architecture, use of objective function and selection of optimization algorithm. Recently, to address these challenges, several solutions for better design and optimization of GANs have been investigated based on techniques of re-engineered network architectures, new objective functions and alternative optimization algorithms. To the best of our knowledge, there is no existing survey that has particularly focused on broad and systematic developments of these solutions. In this study, we perform a comprehensive survey of the advancements in GANs design and optimization solutions proposed to handle GANs challenges. We first identify key research issues within each design and optimization technique and then propose a new taxonomy to structure solutions by key research issues. In accordance with the taxonomy, we provide a detailed discussion on different GANs variants proposed within each solution and their relationships. Finally, based on the insights gained, we present the promising research directions in this rapidly growing field.Comment: 42 pages, Figure 13, Table

    Locality and compositionality in representation learning for complex visual tasks

    Full text link
    L'utilisation d'architectures neuronales profondes associée à des innovations spécifiques telles que les méthodes adversarielles, l’entraînement préalable sur de grands ensembles de données et l'estimation de l'information mutuelle a permis, ces dernières années, de progresser rapidement dans de nombreuses tâches de vision par ordinateur complexes telles que la classification d'images de catégories préalablement inconnues (apprentissage zéro-coups), la génération de scènes ou la classification multimodale. Malgré ces progrès, il n’est pas certain que les méthodes actuelles d’apprentissage de représentations suffiront à atteindre une performance équivalente au niveau humain sur des tâches visuelles arbitraires et, de fait, cela pose des questions quant à la direction de la recherche future. Dans cette thèse, nous nous concentrerons sur deux aspects des représentations qui semblent nécessaires pour atteindre de bonnes performances en aval pour l'apprentissage des représentations : la localité et la compositionalité. La localité peut être comprise comme la capacité d'une représentation à retenir des informations locales. Ceci sera pertinent dans de nombreux cas, et bénéficiera particulièrement à la vision informatique, domaine dans lequel les images naturelles comportent intrinsèquement des informations locales, par exemple des parties pertinentes d’une image, des objets multiples présents dans une scène... D'autre part, une représentation compositionnelle peut être comprise comme une représentation qui résulte d'une combinaison de parties plus simples. Les réseaux neuronaux convolutionnels sont intrinsèquement compositionnels, et de nombreuses images complexes peuvent être considérées comme la composition de sous-composantes pertinentes : les objets et attributs individuels dans une scène, les attributs sémantiques dans l'apprentissage zéro-coups en sont deux exemples. Nous pensons que ces deux propriétés détiennent la clé pour concevoir de meilleures méthodes d'apprentissage de représentations. Dans cette thèse, nous présentons trois articles traitant de la localité et/ou de la compositionnalité, et de leur application à l'apprentissage de représentations pour des tâches visuelles complexes. Dans le premier article, nous introduisons des méthodes de mesure de la localité et de la compositionnalité pour les représentations d'images, et nous démontrons que les représentations locales et compositionnelles sont plus performantes dans l'apprentissage zéro-coups. Nous utilisons également ces deux notions comme base pour concevoir un nouvel algorithme d'apprentissage des représentations qui atteint des performances de pointe dans notre cadre expérimental, une variante de l'apprentissage "zéro-coups" plus difficile où les informations externes, par exemple un pré-entraînement sur d'autres ensembles de données d'images, ne sont pas autorisées. Dans le deuxième article, nous montrons qu'en encourageant un générateur à conserver des informations locales au niveau de l'objet, à l'aide d'un module dit de similarité de graphes de scène, nous pouvons améliorer les performances de génération de scènes. Ce modèle met également en évidence l'importance de la composition, car de nombreux composants fonctionnent individuellement sur chaque objet présent. Pour démontrer pleinement la portée de notre approche, nous effectuons une analyse détaillée et proposons un nouveau cadre pour évaluer les modèles de génération de scènes. Enfin, dans le troisième article, nous montrons qu'en encourageant une forte information mutuelle entre les représentations multimodales locales et globales des images médicales en 2D et 3D, nous pouvons améliorer la classification et la segmentation des images. Ce cadre général peut être appliqué à une grande variété de contextes et démontre les avantages non seulement de la localité, mais aussi de la compositionnalité, car les représentations multimodales sont combinées pour obtenir une représentation plus générale.The use of deep neural architectures coupled with specific innovations such as adversarial methods, pre-training on large datasets and mutual information estimation has in recent years allowed rapid progress in many complex vision tasks such as zero-shot learning, scene generation, or multi-modal classification. Despite such progress, it is still not clear if current representation learning methods will be enough to attain human-level performance on arbitrary visual tasks, and if not, what direction should future research take. In this thesis, we will focus on two aspects of representations that seem necessary to achieve good downstream performance for representation learning: locality and compositionality. Locality can be understood as a representation's ability to retain local information. This will be relevant in many cases, and will specifically benefit computer vision where natural images inherently feature local information, i.e. relevant patches of an image, multiple objects present in a scene... On the other hand, a compositional representation can be understood as one that arises from a combination of simpler parts. Convolutional neural networks are inherently compositional, and many complex images can be seen as composition of relevant sub-components: individual objects and attributes in a scene, semantic attributes in zero-shot learning are two examples. We believe both properties hold the key to designing better representation learning methods. In this thesis, we present 3 articles dealing with locality and/or compositionality, and their application to representation learning for complex visual tasks. In the first article, we introduce ways of measuring locality and compositionality for image representations, and demonstrate that local and compositional representations perform better at zero-shot learning. We also use these two notions as the basis for designing class-matching deep info-max, a novel representation learning algorithm that achieves state-of-the-art performance on our proposed "Zero-shot from scratch" setting, a harder zero-shot setting where external information, e.g. pre-training on other image datasets is not allowed. In the second article, we show that by encouraging a generator to retain local object-level information, using a scene-graph similarity module, we can improve scene generation performance. This model also showcases the importance of compositionality as many components operate individually on each object present. To fully demonstrate the reach of our approach, we perform detailed analysis, and propose a new framework to evaluate scene generation models. Finally, in the third article, we show that encouraging high mutual information between local and global multi-modal representations of 2D and 3D medical images can lead to improvements in image classification and segmentation. This general framework can be applied to a wide variety of settings, and demonstrates the benefits of not only locality, but also of compositionality as multi-modal representations are combined to obtain a more general one
    corecore