484 research outputs found

    SymbioCity: Smart Cities for Smarter Networks

    Get PDF
    The "Smart City" (SC) concept revolves around the idea of embodying cutting-edge ICT solutions in the very fabric of future cities, in order to offer new and better services to citizens while lowering the city management costs, both in monetary, social, and environmental terms. In this framework, communication technologies are perceived as subservient to the SC services, providing the means to collect and process the data needed to make the services function. In this paper, we propose a new vision in which technology and SC services are designed to take advantage of each other in a symbiotic manner. According to this new paradigm, which we call "SymbioCity", SC services can indeed be exploited to improve the performance of the same communication systems that provide them with data. Suggestive examples of this symbiotic ecosystem are discussed in the paper. The dissertation is then substantiated in a proof-of-concept case study, where we show how the traffic monitoring service provided by the London Smart City initiative can be used to predict the density of users in a certain zone and optimize the cellular service in that area.Comment: 14 pages, submitted for publication to ETT Transactions on Emerging Telecommunications Technologie

    Advanced SDN-Based QoS and Security Solutions for Heterogeneous Networks

    Get PDF
    This thesis tries to study how SDN can be employed in order to support Quality of Service and how the support of this functionality is fundamental for today networks. Considering, not only the present networks, but also the next generation ones, the importance of the SDN paradigm become manifest as the use of satellite networks, which can be useful considering their broadcasting capabilities. For these reasons, this research focuses its attention on satellite - terrestrial networks and in particular on the use of SDN inside this environment. An important fact to be taken into account is that the growing of the information technologies has pave the way for new possible threats. This research study tries to cover also this problem considering how SDN can be employed for the detection of past and future malware inside networks

    Machine Learning Meets Communication Networks: Current Trends and Future Challenges

    Get PDF
    The growing network density and unprecedented increase in network traffic, caused by the massively expanding number of connected devices and online services, require intelligent network operations. Machine Learning (ML) has been applied in this regard in different types of networks and networking technologies to meet the requirements of future communicating devices and services. In this article, we provide a detailed account of current research on the application of ML in communication networks and shed light on future research challenges. Research on the application of ML in communication networks is described in: i) the three layers, i.e., physical, access, and network layers; and ii) novel computing and networking concepts such as Multi-access Edge Computing (MEC), Software Defined Networking (SDN), Network Functions Virtualization (NFV), and a brief overview of ML-based network security. Important future research challenges are identified and presented to help stir further research in key areas in this direction

    Telecommunications Networks

    Get PDF
    This book guides readers through the basics of rapidly emerging networks to more advanced concepts and future expectations of Telecommunications Networks. It identifies and examines the most pressing research issues in Telecommunications and it contains chapters written by leading researchers, academics and industry professionals. Telecommunications Networks - Current Status and Future Trends covers surveys of recent publications that investigate key areas of interest such as: IMS, eTOM, 3G/4G, optimization problems, modeling, simulation, quality of service, etc. This book, that is suitable for both PhD and master students, is organized into six sections: New Generation Networks, Quality of Services, Sensor Networks, Telecommunications, Traffic Engineering and Routing

    Telecommunication Economics

    Get PDF
    This book constitutes a collaborative and selected documentation of the scientific outcome of the European COST Action IS0605 Econ@Tel "A Telecommunications Economics COST Network" which run from October 2007 to October 2011. Involving experts from around 20 European countries, the goal of Econ@Tel was to develop a strategic research and training network among key people and organizations in order to enhance Europe's competence in the field of telecommunications economics. Reflecting the organization of the COST Action IS0605 Econ@Tel in working groups the following four major research areas are addressed: - evolution and regulation of communication ecosystems; - social and policy implications of communication technologies; - economics and governance of future networks; - future networks management architectures and mechanisms

    Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks

    Get PDF
    This book presents collective works published in the recent Special Issue (SI) entitled "Recent Developments on Mobile Ad-Hoc Networks and Vehicular Ad-Hoc Networks”. These works expose the readership to the latest solutions and techniques for MANETs and VANETs. They cover interesting topics such as power-aware optimization solutions for MANETs, data dissemination in VANETs, adaptive multi-hop broadcast schemes for VANETs, multi-metric routing protocols for VANETs, and incentive mechanisms to encourage the distribution of information in VANETs. The book demonstrates pioneering work in these fields, investigates novel solutions and methods, and discusses future trends in these field

    Stochastic models for cognitive radio networks

    Get PDF
    During the last decade we have seen an explosive development of wireless technologies. Consequently the demand for electromagnetic spectrum has been growing dramatically resulting in the spectrum scarcity problem. In spite of this, spectrum utilization measurements have shown that licensed bands are vastly underutilized while unlicensed bands are too crowded. In this context, Cognitive Radio emerges as an auspicious paradigm in order to solve those problems. Even more, this concept is envisaged as one of the main components of future wireless technologies, such as the fifth-generation of mobile networks. In this regard, this thesis is founded on cognitive radio networks. We start considering a paid spectrum sharing approach where secondary users (SUs) pay to primary ones for the spectrum utilization. In particular, the first part of the thesis bears on the design and analysis of an optimal SU admission control policy, i.e. that maximizes the long-run profit of the primary service provider. We model the optimal revenue problem as a Markov Decision Process and we use dynamic programming (and other techniques such as sample-path analysis) to characterize properties of the optimal admission control policy. We introduce different changes to one of the best known dynamic programming algorithms incorporating the knowledge of the characterization. In particular, those proposals accelerate the rate of convergence of the algorithm when is applied in the considered context. We complement the analysis of the paid spectrum sharing approach using fluid approximations. That is to say, we obtain a description of the asymptotic behavior of the Markov process as the solution of an ordinary differential equation system. By means of the fluid approximation of the problem, we propose a methodology to estimate the optimal admission control boundary of the maximization profit problem mentioned before. In addition, we use the deterministic model in order to propose some tools and criteria that can be used to improve the mean spectrum utilization with the commitment of providing to secondary users certain quality of service levels. In wireless networks, a cognitive user can take advantage of either the time, the frequency, or the space. In the first part of the thesis we have been concentrated on timefrequency holes, in the second part we address the complete problem incorporating the space variable. In particular, we first introduce a probabilistic model based on a stochastic geometry approach. We focus our study in two of the main performance metrics: medium access probability and coverage probability. Finally, in the last part of the thesis we propose a novel methodology based on configuration models for random graphs. With our proposal, we show that it is possible to calculate an analytic approximation of the medium access probability (both for PUs and, most importantly, SUs) in an arbitrary large heterogeneous random network. This performance metric gives an idea of the possibilities offered by cognitive radio to improve the spectrum utilization. The introduced robust method, as well as all the results of the thesis, are evaluated by several simulations for different network topologies, including real scenarios of primary network deployments. Keywords: Markov decision process, fluid limit, stochastic geometry, random graphs,dynamic spectrum assignment, cognitive radi

    Performance Evaluation of Connectivity and Capacity of Dynamic Spectrum Access Networks

    Get PDF
    Recent measurements on radio spectrum usage have revealed the abundance of under- utilized bands of spectrum that belong to licensed users. This necessitated the paradigm shift from static to dynamic spectrum access (DSA) where secondary networks utilize unused spectrum holes in the licensed bands without causing interference to the licensed user. However, wide scale deployment of these networks have been hindered due to lack of knowledge of expected performance in realistic environments and lack of cost-effective solutions for implementing spectrum database systems. In this dissertation, we address some of the fundamental challenges on how to improve the performance of DSA networks in terms of connectivity and capacity. Apart from showing performance gains via simulation experiments, we designed, implemented, and deployed testbeds that achieve economics of scale. We start by introducing network connectivity models and show that the well-established disk model does not hold true for interference-limited networks. Thus, we characterize connectivity based on signal to interference and noise ratio (SINR) and show that not all the deployed secondary nodes necessarily contribute towards the network\u27s connectivity. We identify such nodes and show that even-though a node might be communication-visible it can still be connectivity-invisible. The invisibility of such nodes is modeled using the concept of Poisson thinning. The connectivity-visible nodes are combined with the coverage shrinkage to develop the concept of effective density which is used to characterize the con- nectivity. Further, we propose three techniques for connectivity maximization. We also show how traditional flooding techniques are not applicable under the SINR model and analyze the underlying causes for that. Moreover, we propose a modified version of probabilistic flooding that uses lower message overhead while accounting for the node outreach and in- terference. Next, we analyze the connectivity of multi-channel distributed networks and show how the invisibility that arises among the secondary nodes results in thinning which we characterize as channel abundance. We also capture the thinning that occurs due to the nodes\u27 interference. We study the effects of interference and channel abundance using Poisson thinning on the formation of a communication link between two nodes and also on the overall connectivity of the secondary network. As for the capacity, we derive the bounds on the maximum achievable capacity of a randomly deployed secondary network with finite number of nodes in the presence of primary users since finding the exact capacity involves solving an optimization problem that shows in-scalability both in time and search space dimensionality. We speed up the optimization by reducing the optimizer\u27s search space. Next, we characterize the QoS that secondary users can expect. We do so by using vector quantization to partition the QoS space into finite number of regions each of which is represented by one QoS index. We argue that any operating condition of the system can be mapped to one of the pre-computed QoS indices using a simple look-up in Olog (N) time thus avoiding any cumbersome computation for QoS evaluation. We implement the QoS space on an 8-bit microcontroller and show how the mathematically intensive operations can be computed in a shorter time. To demonstrate that there could be low cost solutions that scale, we present and implement an architecture that enables dynamic spectrum access for any type of network ranging from IoT to cellular. The three main components of this architecture are the RSSI sensing network, the DSA server, and the service engine. We use the concept of modular design in these components which allows transparency between them, scalability, and ease of maintenance and upgrade in a plug-n-play manner, without requiring any changes to the other components. Moreover, we provide a blueprint on how to use off-the-shelf commercially available software configurable RF chips to build low cost spectrum sensors. Using testbed experiments, we demonstrate the efficiency of the proposed architecture by comparing its performance to that of a legacy system. We show the benefits in terms of resilience to jamming, channel relinquishment on primary arrival, and best channel determination and allocation. We also show the performance gains in terms of frame error rater and spectral efficiency
    • …
    corecore