190 research outputs found

    Computational Modeling of Uncertainty Avoidance in Consumer Behavior

    Get PDF
    Abstract: Human purchasing behavior is affected by many influential factors. Culture at macro-level and personality at microlevel influence consumer purchasing behavior. People of different cultures tend to accept the values of their own group and consequently have different purchasing behavior. Also, people in the same culture have some differences in their purchases which can be described by their personal characteristics. Therefore, this paper studies Uncertainty Avoidance dimension of Hofstede culture model in consumer behavior as well as four personality traits. The consumer model includes three important module including perception, evaluation of the alternatives and post-purchase. Our experimental results show that people of high uncertainty avoidance tend to purchase the high quality products as well as famous brands to reduce the risk of their purchases. On the other hand, people in high uncertainty tolerant culture tend to purchase the new products. The paper discusses about the validity of the proposed model based on empirical data

    Semantic discovery and reuse of business process patterns

    Get PDF
    Patterns currently play an important role in modern information systems (IS) development and their use has mainly been restricted to the design and implementation phases of the development lifecycle. Given the increasing significance of business modelling in IS development, patterns have the potential of providing a viable solution for promoting reusability of recurrent generalized models in the very early stages of development. As a statement of research-in-progress this paper focuses on business process patterns and proposes an initial methodological framework for the discovery and reuse of business process patterns within the IS development lifecycle. The framework borrows ideas from the domain engineering literature and proposes the use of semantics to drive both the discovery of patterns as well as their reuse

    Promoting Honesty in Electronic Marketplaces: Combining Trust Modeling and Incentive Mechanism Design

    Get PDF
    This thesis work is in the area of modeling trust in multi-agent systems, systems of software agents designed to act on behalf of users (buyers and sellers), in applications such as e-commerce. The focus is on developing an approach for buyers to model the trustworthiness of sellers in order to make effective decisions about which sellers to select for business. One challenge is the problem of unfair ratings, which arises when modeling the trust of sellers relies on ratings provided by other buyers (called advisors). Existing approaches for coping with this problem fail in scenarios where the majority of advisors are dishonest, buyers do not have much personal experience with sellers, advisors try to flood the trust modeling system with unfair ratings, and sellers vary their behavior widely. We propose a novel personalized approach for effectively modeling trustworthiness of advisors, allowing a buyer to 1) model the private reputation of an advisor based on their ratings for commonly rated sellers 2) model the public reputation of the advisor based on all ratings for the sellers ever rated by that agent 3) flexibly weight the private and public reputation into one combined measure of the trustworthiness of the advisor. Our approach tracks ratings provided according to their time windows and limits the ratings accepted, in order to cope with advisors flooding the system and to deal with changes in agents' behavior. Experimental evidence demonstrates that our model outperforms other models in detecting dishonest advisors and is able to assist buyers to gain the largest profit when doing business with sellers. Equipped with this richer method for modeling trustworthiness of advisors, we then embed this reasoning into a novel trust-based incentive mechanism to encourage agents to be honest. In this mechanism, buyers select the most trustworthy advisors as their neighbors from which they can ask advice about sellers, forming a social network. In contrast with other researchers, we also have sellers model the reputation of buyers. Sellers will offer better rewards to satisfy buyers that are well respected in the social network, in order to build their own reputation. We provide precise formulae used by sellers when reasoning about immediate and future profit to determine their bidding behavior and the rewards to buyers, and emphasize the importance for buyers to adopt a strategy to limit the number of sellers that are considered for each good to be purchased. We theoretically prove that our mechanism promotes honesty from buyers in reporting seller ratings, and honesty from sellers in delivering products as promised. We also provide a series of experimental results in a simulated dynamic environment where agents may be arriving and departing. This provides a stronger defense of the mechanism as one that is robust to important conditions in the marketplace. Our experiments clearly show the gains in profit enjoyed by both honest sellers and honest buyers when our mechanism is introduced and our proposed strategies are followed. In general, our research will serve to promote honesty amongst buyers and sellers in e-marketplaces. Our particular proposal of allowing sellers to model buyers opens a new direction in trust modeling research. The novel direction of designing an incentive mechanism based on trust modeling and using this mechanism to further help trust modeling by diminishing the problem of unfair ratings will hope to bridge researchers in the areas of trust modeling and mechanism design

    Next Generation Business Ecosystems: Engineering Decentralized Markets, Self-Sovereign Identities and Tokenization

    Get PDF
    Digital transformation research increasingly shifts from studying information systems within organizations towards adopting an ecosystem perspective, where multiple actors co-create value. While digital platforms have become a ubiquitous phenomenon in consumer-facing industries, organizations remain cautious about fully embracing the ecosystem concept and sharing data with external partners. Concerns about the market power of platform orchestrators and ongoing discussions on privacy, individual empowerment, and digital sovereignty further complicate the widespread adoption of business ecosystems, particularly in the European Union. In this context, technological innovations in Web3, including blockchain and other distributed ledger technologies, have emerged as potential catalysts for disrupting centralized gatekeepers and enabling a strategic shift towards user-centric, privacy-oriented next-generation business ecosystems. However, existing research efforts focus on decentralizing interactions through distributed network topologies and open protocols lack theoretical convergence, resulting in a fragmented and complex landscape that inadequately addresses the challenges organizations face when transitioning to an ecosystem strategy that harnesses the potential of disintermediation. To address these gaps and successfully engineer next-generation business ecosystems, a comprehensive approach is needed that encompasses the technical design, economic models, and socio-technical dynamics. This dissertation aims to contribute to this endeavor by exploring the implications of Web3 technologies on digital innovation and transformation paths. Drawing on a combination of qualitative and quantitative research, it makes three overarching contributions: First, a conceptual perspective on \u27tokenization\u27 in markets clarifies its ambiguity and provides a unified understanding of the role in ecosystems. This perspective includes frameworks on: (a) technological; (b) economic; and (c) governance aspects of tokenization. Second, a design perspective on \u27decentralized marketplaces\u27 highlights the need for an integrated understanding of micro-structures, business structures, and IT infrastructures in blockchain-enabled marketplaces. This perspective includes: (a) an explorative literature review on design factors; (b) case studies and insights from practitioners to develop requirements and design principles; and (c) a design science project with an interface design prototype of blockchain-enabled marketplaces. Third, an economic perspective on \u27self-sovereign identities\u27 (SSI) as micro-structural elements of decentralized markets. This perspective includes: (a) value creation mechanisms and business aspects of strategic alliances governing SSI ecosystems; (b) business model characteristics adopted by organizations leveraging SSI; and (c) business model archetypes and a framework for SSI ecosystem engineering efforts. The dissertation concludes by discussing limitations as well as outlining potential avenues for future research. These include, amongst others, exploring the challenges of ecosystem bootstrapping in the absence of intermediaries, examining the make-or-join decision in ecosystem emergence, addressing the multidimensional complexity of Web3-enabled ecosystems, investigating incentive mechanisms for inter-organizational collaboration, understanding the role of trust in decentralized environments, and exploring varying degrees of decentralization with potential transition pathways

    Toward Secure Trust and Reputation Systems for Electronic Marketplaces

    Get PDF
    In electronic marketplaces, buying and selling agents may be used to represent buyers and sellers respectively. When these marketplaces are large, repeated transactions between traders may be rare. This makes it difficult for buying agents to judge the reliability of selling agents, discouraging participation in the market. A variety of trust and reputation systems have been proposed to help traders to find trustworthy partners. Unfortunately, as our investigations reveal, there are a number of common vulnerabilities present in such models---security problems that may be exploited by `attackers' to cheat without detection/repercussions. Inspired by these findings, we set out to develop a model of trust with more robust security properties than existing proposals. Our Trunits model represents a fundamental re-conception of the notion of trust. Instead of viewing trust as a measure of predictability, Trunits considers trust to be a quality that one possesses. Trust is represented using abstract trust units, or `trunits', in much the same way that money represents quantities of value. Trunits flow in the course of transactions (again, similar to money); a trader's trunit balance determines if he is trustworthy for a given transaction. Faithful execution of a transaction results in a larger trunit balance, permitting the trader to engage in more transactions in the future---a built-in economic incentive for honesty. We present two mechanisms (sets of rules that govern the operation of the marketplace) based on this model: Basic Trunits, and an extension known as Commodity Trunits, in which trunits may be bought and sold. Seeking to precisely characterize the protection provided to market participants by our models, we develop a framework for security analysis of trust and reputation systems. Inspired by work in cryptography, our framework allows security guarantees to be developed for trust/reputation models--provable claims of the degree of protection provided, and the conditions under which such protection holds. We focus in particular on characterizing buyer security: the properties that must hold for buyers to feel secure from cheating sellers. Beyond developing security guarantees, this framework is an important research tool, helping to highlight limitations and deficiencies in models so that they may be targeted for future investigation. Application of this framework to Basic Trunits and Commodity Trunits reveals that both are able to deliver provable security to buyers

    Addressing the Issues of Coalitions and Collusion in Multiagent Systems

    Get PDF
    In the field of multiagent systems, trust and reputation systems are intended to assist agents in finding trustworthy partners with whom to interact. Earlier work of ours identified in theory a number of security vulnerabilities in trust and reputation systems, weaknesses that might be exploited by malicious agents to bypass the protections offered by such systems. In this work, we begin by developing the TREET testbed, a simulation platform that allows for extensive evaluation and flexible experimentation with trust and reputation technologies. We use this testbed to experimentally validate the practicality and gravity of attacks against vulnerabilities. Of particular interest are attacks that are collusive in nature: groups of agents (coalitions) working together to improve their expected rewards. But the issue of coalitions is not unique to trust and reputation; rather, it cuts across a range of fields in multiagent systems and beyond. In some scenarios, coalitions may be unwanted or forbidden; in others they may be benign or even desirable. In this document, we propose a method for detecting coalitions and identifying coalition members, a capability that is likely to be valuable in many of the diverse fields where coalitions may be of interest. Our method makes use of clustering in benefit space (a high-dimensional space reflecting how agents benefit others in the system) in order to identify groups of agents who benefit similar sets of agents. A statistical technique is then used to identify which clusters contain coalitions. Experimentation using the TREET platform verifies the effectiveness of this approach. A series of enhancements to our method are also introduced, which improve the accuracy and robustness of the algorithm. To demonstrate how this broadly-applicable tool can be used to address domain-specific problems, we focus again on trust and reputation systems. We show how, by incorporating our work into one such system (the existing Beta Reputation System), we can provide resistance to collusion. We conclude with a detailed discussion of the value of our work for a wide range of environments, including a variety of multiagent systems and real-world settings

    Novel Directions for Multiagent Trust Modeling in Online Social Networks

    Get PDF
    This thesis presents two works with the shared goal of improving the capacity of multiagent trust modeling to be applied to social networks. The first demonstrates how analyzing the responses to content on a discussion forum can be used to detect certain types of undesirable behaviour. This technique can be used to extract quantified representations of the impact agents are having on the community, a critical component for trust modeling. The second work expands on the technique of multi-faceted trust modeling, determining whether a clustering step designed to group agents by similarity can improve the performance of trust link predictors. Specifically, we hypothesize that learning a distinct model for each cluster of similar users will result in more personalized, and therefore more accurate, predictions. Online social networks have exploded in popularity over the course of the last decade, becoming a central source of information and entertainment for millions of users. This radical democratization of the flow of information, while purporting many benefits, also raises a raft of new issues. These networks have proven to be a potent medium for the spread of misinformation and rumors, may contribute to the radicalization of communities, and are vulnerable to deliberate manipulation by bad actors. In this thesis, our primary aim is to examine content recommendation on social media through the lens of trust modeling. The central supposition along this path is that the behaviors of content creators and the consumers of their content can be fit into the trust modeling framework, supporting recommendations of content from creators who not only are popular, but have the support of trustworthy users and are trustworthy themselves. This research direction shows promise for tackling many of the issues we've mentioned. Our works show that a machine learning model can predict certain types of anti-social behaviour in a discussion starting comment solely on the basis of analyzing replies to that comment with accuracy in the range of 70% to 80%. Further, we show that a clustering based approach to personalization for multi-faceted trust models can increase accuracy on a down-stream trust aware item recommendation task, evaluated on a large data set of Yelp users
    corecore