328 research outputs found

    Improving Unsupervised Defect Segmentation by Applying Structural Similarity to Autoencoders

    Full text link
    Convolutional autoencoders have emerged as popular methods for unsupervised defect segmentation on image data. Most commonly, this task is performed by thresholding a pixel-wise reconstruction error based on an p\ell^p distance. This procedure, however, leads to large residuals whenever the reconstruction encompasses slight localization inaccuracies around edges. It also fails to reveal defective regions that have been visually altered when intensity values stay roughly consistent. We show that these problems prevent these approaches from being applied to complex real-world scenarios and that it cannot be easily avoided by employing more elaborate architectures such as variational or feature matching autoencoders. We propose to use a perceptual loss function based on structural similarity which examines inter-dependencies between local image regions, taking into account luminance, contrast and structural information, instead of simply comparing single pixel values. It achieves significant performance gains on a challenging real-world dataset of nanofibrous materials and a novel dataset of two woven fabrics over the state of the art approaches for unsupervised defect segmentation that use pixel-wise reconstruction error metrics

    Manufacturing Quality Control with Autoencoder-Based Defect Localization and Unsupervised Class Selection

    Full text link
    Manufacturing industries require efficient and voluminous production of high-quality finished goods. In the context of Industry 4.0, visual anomaly detection poses an optimistic solution for automatically controlling product quality with high precision. Automation based on computer vision poses a promising solution to prevent bottlenecks at the product quality checkpoint. We considered recent advancements in machine learning to improve visual defect localization, but challenges persist in obtaining a balanced feature set and database of the wide variety of defects occurring in the production line. This paper proposes a defect localizing autoencoder with unsupervised class selection by clustering with k-means the features extracted from a pre-trained VGG-16 network. The selected classes of defects are augmented with natural wild textures to simulate artificial defects. The study demonstrates the effectiveness of the defect localizing autoencoder with unsupervised class selection for improving defect detection in manufacturing industries. The proposed methodology shows promising results with precise and accurate localization of quality defects on melamine-faced boards for the furniture industry. Incorporating artificial defects into the training data shows significant potential for practical implementation in real-world quality control scenarios

    Comparative Evaluation and Implementation of State-of-the-Art Techniques for Anomaly Detection and Localization in the Continual Learning Framework

    Get PDF
    openThe capability of anomaly detection (AD) to detect defects in industrial environments using only normal samples has attracted significant attention. However, traditional AD methods have primarily concentrated on the current set of examples, leading to a significant drawback of catastrophic forgetting when faced with new tasks. Due to the constraints in flexibility and the challenges posed by real-world industrial scenarios, there is an urgent need to strengthen the adaptive capabilities of AD models. Hence, this thesis introduces a unified framework that integrates continual learning (CL) and anomaly detection (AD) to accomplish the goal of anomaly detection in the continual learning (ADCL). To evaluate the effectiveness of the framework, a comparative analysis is performed to assess the performance of the three specific feature-based methods for the AD task: Coupled-Hypersphere-Based Feature Adaptation (CFA), Student-Teacher approach, and PatchCore. Furthermore, the framework incorporates the utilization of replay techniques to facilitate continual learning (CL). A comprehensive evaluation is conducted using a range of metrics to analyze the relative performance of each technique and identify the one that exhibits superior results. To validate the effectiveness of the proposed approach, the MVTec AD dataset, consisting of real-world images with pixel-based anomalies, is utilized. This dataset serves as a reliable benchmark for Anomaly Detection in the context of Continual Learning, providing a solid foundation for further advancements in the field.The capability of anomaly detection (AD) to detect defects in industrial environments using only normal samples has attracted significant attention. However, traditional AD methods have primarily concentrated on the current set of examples, leading to a significant drawback of catastrophic forgetting when faced with new tasks. Due to the constraints in flexibility and the challenges posed by real-world industrial scenarios, there is an urgent need to strengthen the adaptive capabilities of AD models. Hence, this thesis introduces a unified framework that integrates continual learning (CL) and anomaly detection (AD) to accomplish the goal of anomaly detection in the continual learning (ADCL). To evaluate the effectiveness of the framework, a comparative analysis is performed to assess the performance of the three specific feature-based methods for the AD task: Coupled-Hypersphere-Based Feature Adaptation (CFA), Student-Teacher approach, and PatchCore. Furthermore, the framework incorporates the utilization of replay techniques to facilitate continual learning (CL). A comprehensive evaluation is conducted using a range of metrics to analyze the relative performance of each technique and identify the one that exhibits superior results. To validate the effectiveness of the proposed approach, the MVTec AD dataset, consisting of real-world images with pixel-based anomalies, is utilized. This dataset serves as a reliable benchmark for Anomaly Detection in the context of Continual Learning, providing a solid foundation for further advancements in the field

    Unsupervised Anomaly Localization with Structural Feature-Autoencoders

    Full text link
    Unsupervised Anomaly Detection has become a popular method to detect pathologies in medical images as it does not require supervision or labels for training. Most commonly, the anomaly detection model generates a "normal" version of an input image, and the pixel-wise lpl^p-difference of the two is used to localize anomalies. However, large residuals often occur due to imperfect reconstruction of the complex anatomical structures present in most medical images. This method also fails to detect anomalies that are not characterized by large intensity differences to the surrounding tissue. We propose to tackle this problem using a feature-mapping function that transforms the input intensity images into a space with multiple channels where anomalies can be detected along different discriminative feature maps extracted from the original image. We then train an Autoencoder model in this space using structural similarity loss that does not only consider differences in intensity but also in contrast and structure. Our method significantly increases performance on two medical data sets for brain MRI. Code and experiments are available at https://github.com/FeliMe/feature-autoencoderComment: 10 pages, 5 figures, one table, accepted to the MICCAI 2021 BrainLes Worksho

    Deteção automática de defeitos em couro

    Get PDF
    Dissertação de mestrado em Informatics EngineeringEsta dissertação desenvolve-se em torno do problema da deteção de defeitos em couro. A deteção de defeitos em couro é um problema tradicionalmente resolvido manualmente, usando avaliadores ex perientes na inspeção do couro. No entanto, como esta tarefa é lenta e suscetível ao erro humano, ao longo dos últimos 20 anos tem-se procurado soluções que automatizem a tarefa. Assim, surgiram várias soluções capazes de resolver o problema eficazmente utilizando técnicas de Machine Learning e Visão por Computador. No entanto, todas elas requerem um conjunto de dados de grande dimensão anotado e balanceado entre as várias categorias. Assim, esta dissertação pretende automatizar o processo tradicio nal, usando técnicas de Machine Learning, mas sem recorrer a datasets anotados de grandes dimensões. Para tal, são exploradas técnicas de Novelty Detection, as quais permitem resolver a tarefa de inspeção de defeitos utilizando um conjunto de dados não supervsionado, pequeno e não balanceado. Nesta dis sertação foram analisadas e testadas as seguintes técnicas de novelty detection: MSE Autoencoder, SSIM Autoencoder, CFLOW, STFPM, Reverse, and DRAEM. Estas técnicas foram treinadas e testadas com dois conjuntos de dados diferentes: MVTEC e Neadvance. As técnicas analisadas detectam e localizam a mai oria dos defeitos das imagens do MVTEC. Contudo, têm dificuldades em detetar os defeitos das imagens do dataset da Neadvance. Com base nos resultados obtidos, é proposta a melhor metodologia a usar para três diferentes cenários. No caso do poder computacional ser baixo, SSIM Autoencoder deve ser a técnica usada. No caso onde há poder computational suficiente e os exemplos a analisar são de uma só cor, DRAEM deve ser a técnica escolhida. Em qualquer outro caso, o STFPM deve ser a opção escolhida.This dissertation develops around the leather defects detection problem. The leather defects detec tion problem is traditionally manually solved, using experient assorters in the leather inspection. However, as this task is slow and prone to human error, over the last 20 years the searching for solutions that automatize this task has continued. In this way, several solutions capable to solve the problem effi ciently emerged using Machine Learning and Computer Vision techniques. Nonetheless, they all require a high-dimension dataset labeled and balanced between all categories. Thus, this dissertation pretends to automatize the traditional process, using the Machine Learning techniques without requiring a large dimensions labelled dataset. To this end, there will be explored Novelty Detection techniques, that in tend to solve the leather inspection task using an unsupervised small and non-balanced dataset. This dissertation analyzed and tested the following Novelty Detection techniques: MSE Autoencoder, SSIM Autoencoder, CFLOW, STFPM, Reverse, and DRAEM. These techniques are trained and tested in two distinct datasets: MVTEC and Neadvance. The analyzed techniques detect and localize most MVTEC defects. However, they have difficulties in defect detection on Neadvance samples. Based on the ob tained results, it is proposed the best methodology to use for three distinct scenarios. In the case where the computational power available is low, SSIM Autoencoder should be the technique to use. In the case where there is enough computational power and the samples to inspect have the same color, DRAEM should be the chosen technique. In any other case, the STFPM should be the chosen option

    PAEDID: Patch Autoencoder Based Deep Image Decomposition For Pixel-level Defective Region Segmentation

    Full text link
    Unsupervised pixel-level defective region segmentation is an important task in image-based anomaly detection for various industrial applications. The state-of-the-art methods have their own advantages and limitations: matrix-decomposition-based methods are robust to noise but lack complex background image modeling capability; representation-based methods are good at defective region localization but lack accuracy in defective region shape contour extraction; reconstruction-based methods detected defective region match well with the ground truth defective region shape contour but are noisy. To combine the best of both worlds, we present an unsupervised patch autoencoder based deep image decomposition (PAEDID) method for defective region segmentation. In the training stage, we learn the common background as a deep image prior by a patch autoencoder (PAE) network. In the inference stage, we formulate anomaly detection as an image decomposition problem with the deep image prior and domain-specific regularizations. By adopting the proposed approach, the defective regions in the image can be accurately extracted in an unsupervised fashion. We demonstrate the effectiveness of the PAEDID method in simulation studies and an industrial dataset in the case study

    Integrating State-of-the-Art Approaches for Anomaly Detection and Localization in the Continual Learning Setting

    Get PDF
    openThe significant attention surrounding the application of anomaly detection (AD) in identifying defects within industrial environments using only normal samples has prompted research and development in this area. However, traditional AD methods have been primarily focused on the current set of examples, resulting in a limitation known as catastrophic forgetting when encountering new tasks. The inflexibility of these methods and the challenges posed by real-world industrial scenarios necessitate the urgent enhancement of the adaptive capabilities of AD models. Therefore, this thesis presents an integrated framework that combines the concepts of continual learning (CL) and anomaly detection (AD) to achieve the objective of anomaly detection in continual learning (ADCL). To evaluate the efficacy of the framework, a thorough comparative analysis is conducted to assess the performance of three specific methods for the AD task: the EfficientAD, Patch Distribution Modeling Framework (PaDiM) and the Discriminatively Trained Reconstruction Anomaly Embedding Model (DRAEM). Moreover, the framework incorporates the use of replay techniques to enable continual learning (CL). In order to determine the superior technique, a comprehensive evaluation is carried out using diverse metrics that measure the relative performance of each method. To validate the proposed approach, a robust real-world dataset called MVTec AD is employed, consisting of images with pixel-based anomalies. This dataset serves as a reliable benchmark for Anomaly Detection in the context of Continual Learning, offering a solid foundation for further advancements in this field of study.The significant attention surrounding the application of anomaly detection (AD) in identifying defects within industrial environments using only normal samples has prompted research and development in this area. However, traditional AD methods have been primarily focused on the current set of examples, resulting in a limitation known as catastrophic forgetting when encountering new tasks. The inflexibility of these methods and the challenges posed by real-world industrial scenarios necessitate the urgent enhancement of the adaptive capabilities of AD models. Therefore, this thesis presents an integrated framework that combines the concepts of continual learning (CL) and anomaly detection (AD) to achieve the objective of anomaly detection in continual learning (ADCL). To evaluate the efficacy of the framework, a thorough comparative analysis is conducted to assess the performance of three specific methods for the AD task: the EfficientAD, Patch Distribution Modeling Framework (PaDiM) and the Discriminatively Trained Reconstruction Anomaly Embedding Model (DRAEM). Moreover, the framework incorporates the use of replay techniques to enable continual learning (CL). In order to determine the superior technique, a comprehensive evaluation is carried out using diverse metrics that measure the relative performance of each method. To validate the proposed approach, a robust real-world dataset called MVTec AD is employed, consisting of images with pixel-based anomalies. This dataset serves as a reliable benchmark for Anomaly Detection in the context of Continual Learning, offering a solid foundation for further advancements in this field of study

    Uninformed Students: Student-Teacher Anomaly Detection with Discriminative Latent Embeddings

    Full text link
    We introduce a powerful student-teacher framework for the challenging problem of unsupervised anomaly detection and pixel-precise anomaly segmentation in high-resolution images. Student networks are trained to regress the output of a descriptive teacher network that was pretrained on a large dataset of patches from natural images. This circumvents the need for prior data annotation. Anomalies are detected when the outputs of the student networks differ from that of the teacher network. This happens when they fail to generalize outside the manifold of anomaly-free training data. The intrinsic uncertainty in the student networks is used as an additional scoring function that indicates anomalies. We compare our method to a large number of existing deep learning based methods for unsupervised anomaly detection. Our experiments demonstrate improvements over state-of-the-art methods on a number of real-world datasets, including the recently introduced MVTec Anomaly Detection dataset that was specifically designed to benchmark anomaly segmentation algorithms.Comment: Accepted to CVPR 202
    corecore