11,871 research outputs found

    Defining a robust biological prior from Pathway Analysis to drive Network Inference

    Get PDF
    Inferring genetic networks from gene expression data is one of the most challenging work in the post-genomic era, partly due to the vast space of possible networks and the relatively small amount of data available. In this field, Gaussian Graphical Model (GGM) provides a convenient framework for the discovery of biological networks. In this paper, we propose an original approach for inferring gene regulation networks using a robust biological prior on their structure in order to limit the set of candidate networks. Pathways, that represent biological knowledge on the regulatory networks, will be used as an informative prior knowledge to drive Network Inference. This approach is based on the selection of a relevant set of genes, called the "molecular signature", associated with a condition of interest (for instance, the genes involved in disease development). In this context, differential expression analysis is a well established strategy. However outcome signatures are often not consistent and show little overlap between studies. Thus, we will dedicate the first part of our work to the improvement of the standard process of biomarker identification to guarantee the robustness and reproducibility of the molecular signature. Our approach enables to compare the networks inferred between two conditions of interest (for instance case and control networks) and help along the biological interpretation of results. Thus it allows to identify differential regulations that occur in these conditions. We illustrate the proposed approach by applying our method to a study of breast cancer's response to treatment

    Differential gene expression graphs: A data structure for classification in DNA microarrays

    Get PDF
    This paper proposes an innovative data structure to be used as a backbone in designing microarray phenotype sample classifiers. The data structure is based on graphs and it is built from a differential analysis of the expression levels of healthy and diseased tissue samples in a microarray dataset. The proposed data structure is built in such a way that, by construction, it shows a number of properties that are perfectly suited to address several problems like feature extraction, clustering, and classificatio

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Genomic, Pathway Network, and Immunologic Features Distinguishing Squamous Carcinomas

    Get PDF
    This integrated, multiplatform PanCancer Atlas study co-mapped and identified distinguishing molecular features of squamous cell carcinomas (SCCs) from five sites associated with smokin
    corecore