931 research outputs found

    A survey of performance enhancement of transmission control protocol (TCP) in wireless ad hoc networks

    Get PDF
    This Article is provided by the Brunel Open Access Publishing Fund - Copyright @ 2011 Springer OpenTransmission control protocol (TCP), which provides reliable end-to-end data delivery, performs well in traditional wired network environments, while in wireless ad hoc networks, it does not perform well. Compared to wired networks, wireless ad hoc networks have some specific characteristics such as node mobility and a shared medium. Owing to these specific characteristics of wireless ad hoc networks, TCP faces particular problems with, for example, route failure, channel contention and high bit error rates. These factors are responsible for the performance degradation of TCP in wireless ad hoc networks. The research community has produced a wide range of proposals to improve the performance of TCP in wireless ad hoc networks. This article presents a survey of these proposals (approaches). A classification of TCP improvement proposals for wireless ad hoc networks is presented, which makes it easy to compare the proposals falling under the same category. Tables which summarize the approaches for quick overview are provided. Possible directions for further improvements in this area are suggested in the conclusions. The aim of the article is to enable the reader to quickly acquire an overview of the state of TCP in wireless ad hoc networks.This study is partly funded by Kohat University of Science & Technology (KUST), Pakistan, and the Higher Education Commission, Pakistan

    Cross layer metrics for improving transport protocols in multihop wireless networks

    No full text
    Session Posters & DemosInternational audienceNotre travail s'inscrit dans l'amélioration des protocoles de transport dans les réseaux sans fil ad hoc multisauts. Nous présentons différentes métriques provenant des couches physiques ou liaison pour améliorer les performances de la phase de contrÎle de congestion de TCP. Ce papier introduit une classification des métriques inter-couches pour améliorer le niveau transport

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    MAC-aware rate control for transport protocol in multihop wireless networks

    Get PDF
    International audienceTransport layer performance in IEEE 802.11 mul-tihop wireless networks (MHWNs) has been greatly challenged by wireless medium characteristics and multihop nature which are the sources of several types of packet loss including collision, random channel errors and route failures. Rate control transport protocols, the candidates for multimedia streaming applications suffer from high loss rates and end-to-end delay in MHWNs. A common research direction is that the rate control mechanisms at transport layer should be aware of MAC layer contention to keep the network load at a reasonable level. In this paper, we introduce a new MAC metric which reflects the contention and congestion levels more accurately. The metric is then used to improve the rate control mechanism of a rate-based transport protocol in MHWNs. The simulation results show that the adapted mechanism introduces significant performance improvement in MHWNs

    Cross-layer aided energy-efficient routing design for ad hoc networks

    No full text
    In this treatise, we first review some basic routing protocols conceived for ad hoc networks, followed by some design examples of cross-layer operation aided routing protocols. Specifically, cross-layer operation across the PHYsical layer (PHY), the Data Link layer (DL) and even the NETwork layer (NET) is exemplified for improving the energy efficiency of the entire system. Moreover, the philosophy of Opportunistic Routing (OR) is reviewed for the sake of further reducing the system's energy dissipation with the aid of optimized Power Allocation (PA). The system's end-to-end throughput is also considered in the context of a design example

    TCP with Adaptive Pacing for Multihop Wireless Networks

    Get PDF
    In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions

    Modelling and Analysis of TCP Performance in Wireless Multihop Networks

    Get PDF
    Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is fixed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases first, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation result

    Smart Acknowledgement Distributed Channel Access Scheme for TCP in MANETs

    Get PDF
    TCP upon wireless networks is most challenging issue because of random losses and ACK interference. Also, TCP suffers from performance declination in terms of creating delay and overhead in network because of poor characteristics of wireless channel. In order to overcome these issues, we proposed a Smart Acknowledgement Distributed Channel Access (SADCA) scheme for TCP in MANETs. In the proposed scheme, first a separate Access Category (AC) for data less TCP acknowledgement packets is used and then it is assigned with highest priority. In this way, delay during transmission of packet can be reduced and also packet can be acknowledged immediately. Also, to increase the performance, delay window size can be adjusted by considering the parameters such as transmission rate, number of hops, and channel occupied ratio (COR). Hence the proposed scheme helps to avoid any kind of delay and overhead for sending TCP acknowledgemen
    • 

    corecore