24 research outputs found

    Optimal Schedules for Data Gathering in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) are widely used for target monitoring: sensors monitor a set of targets, and forward the collected or aggregated data using multi-hop routing to the same location, called the sink. The resulting communication scheme is called ConvergeCast or Aggregated ConvergeCast. Several researchers studied the ConvergeCast and the Aggregated ConvergeCast, as to produce the shortest possible schedule that conveys all the packets or a packet aggregation to the sink. Nearly all proposed methods proceed in two steps, first the routing, and then the scheduling of the packets along the routes defined in the first step. The thesis is organized around four contributions. The first one is an improvement of the previous mathematical models that outputs (minimum-sized) multi-set of transmission configurations (TCs), in which a transmission configuration is defined as a set of links that can transmit concurrently. Our model allows the transmission of several packets per target, in both single-path and multi-path settings; we give two new heuristics for generating new improved transmission configurations. While such models go beyond the routing step, they do not specify an ordering over time of the configurations. Consequently, the second contribution consists of several algorithms, one exact and several heuristics, for ordering the configurations. Our results show that the approach of scheduling when restricted to a tree generated by the first contribution significantly outperforms the ordering of configurations of TC-approach for single-rate, single packet per sensor traffic patterns, but the TC approach gives better results for multi-rate traffic and when there are a large number of packets per sensor. In the last two contributions, we propose an exact mathematical model that takes care, in a single phase, of the routing and the scheduling, for the ConvergeCast and the aggregated ConvergeCast problem. They both correspond to decomposition models in which not only we generate transmission configurations, but an ordering of them. We performed extensive simulations on networks with up to 70 sensors for both ConvergeCast and Aggregated ConvergeCast, and compared our one phase results with one of the best heuristics in the literature

    Interference Mitigation in Multi-Hop Wireless Networks with Advanced Physical-Layer Techniques

    Get PDF
    In my dissertation, we focus on the wireless network coexistence problem with advanced physical-layer techniques. For the first part, we study the problem of Wireless Body Area Networks (WBAN)s coexisting with cross-technology interference (CTI). WBANs face the RF cross-technology interference (CTI) from non-protocol-compliant wireless devices. Werst experimentally characterize the adverse effect on BAN caused by the CTI sources. Then we formulate a joint routing and power control (JRPC) problem, which aims at minimizing energy consumption while satisfying node reachability and delay constraints. We reformulate our problem into a mixed integer linear programing problem (MILP) and then derive the optimal results. A practical JRPC protocol is then proposed. For the second part, we study the coexistence of heterogeneous multi-hop networks with wireless MIMO. We propose a new paradigm, called cooperative interference mitigation (CIM), which makes it possible for disparate networks to cooperatively mitigate the interference to/from each other to enhance everyone\u27s performance. We establish two tractable models to characterize the CIM behaviors of both networks by using full IC (FIC) and receiver-side IC (RIC) only. We propose two bi-criteria optimization problems aiming at maximizing both networks\u27 throughput, while cooperatively canceling the interference between them based on our two models. In the third and fourth parts, we study the coexistence problem with MIMO from a different point of view: the incentive of cooperation. We propose a novel two-round game framework, based on which we derive two networks\u27 equilibrium strategies and the corresponding closed-form utilities. We then extend our game-theoretical analysis to a general multi-hop case, specifically the coexistence problem between primary network and multi-hop secondary network in the cognitive radio networks domain. In the final part, we study the benefits brought by reconfigurable antennas (RA). We systematically exploit the pattern diversity and fast reconfigurability of RAs to enhance the throughput of MWNs. Werst propose a novel link-layer model that captures the dynamic relations between antenna pattern, link coverage and interference. Based on our model, a throughput optimization framework is proposed by jointly considering pattern selection and link scheduling, which is formulated as a mixed integer non-linear programming problem

    CAMA: Efficient Modeling of the Capture Effect for Low Power Wireless Networks

    Get PDF
    Network simulation is an essential tool for the design and evaluation of wireless network protocols, and realistic channel modeling is essential for meaningful analysis. Recently, several network protocols have demonstrated substantial network performance improvements by exploiting the capture effect, but existing models of the capture effect are still not adequate for protocol simulation and analysis. Physical-level models that calculate the signal-to-interference-plus-noise ratio (SINR) for every incoming bit are too slow to be used for large-scale or long-term networking experiments, and link-level models such as those currently used by the NS2 simulator do not accurately predict protocol performance. In this article, we propose a new technique called the capture modeling algorithm (CAMA) that provides the simulation fidelity of physical-level models while achieving the simulation time of link-level models. We confirm the validity of CAMA through comparison with the empirical traces of the experiments conducted by various numbers of CC1000 and CC2420-based nodes in different scenarios. Our results indicate that CAMA can accurately predict the packet reception, corruption, and collision detection rates of real radios, while existing models currently used by the NS2 simulator produce substantial prediction error

    From MANET to people-centric networking: Milestones and open research challenges

    Get PDF
    In this paper, we discuss the state of the art of (mobile) multi-hop ad hoc networking with the aim to present the current status of the research activities and identify the consolidated research areas, with limited research opportunities, and the hot and emerging research areas for which further research is required. We start by briefly discussing the MANET paradigm, and why the research on MANET protocols is now a cold research topic. Then we analyze the active research areas. Specifically, after discussing the wireless-network technologies, we analyze four successful ad hoc networking paradigms, mesh networks, opportunistic networks, vehicular networks, and sensor networks that emerged from the MANET world. We also present an emerging research direction in the multi-hop ad hoc networking field: people centric networking, triggered by the increasing penetration of the smartphones in everyday life, which is generating a people-centric revolution in computing and communications

    Predictable Reliability In Inter-Vehicle Communications

    Get PDF
    Predictably reliable communication in wireless networked sensing and control systems (WSC) is a basic enabler for performance guarantee. Yet current research efforts are either focus on maximizing throughput or based on inaccurate interference modelling methods, which yield unsatisfactory results in terms of communication reliability. In this dissertation, we discuss techniques that enable reliable communication in both traditional wireless sensor networks and highly mobile inter-vehicle communication networks. We focus our discussion on traditional wireless sensor networks in Chapter 2 where we discuss mechanisms that enable predictable and reliable communications with no centralized infrastructures. With the promising results in Chapter 2, we extend our methods to inter-vehicle communication networks in Chapter 3. We focus on the broadcast communication paradigm and the unique challenges in applying the PRK interference model into broadcast problems in highly mobile inter-vehicle communication networks. While Chapter 2 and Chapter 3 focus on average reliability, we switch our problem to a more challenging aspect: guaranteeing short-term per-packet reception probability in Chapter 4. Specifically, we describe the PRKS protocol in Chapter 2 which considers unicast transmission paradigm in traditional static wireless sensor networks. PRKS uses the PRK interference model as a basis for interference relation identification that captures characteristics of wireless communications. For communication reliability control, we design a controller that runs at each link receiver and is able to control the average link reliability to be no lower than an application requirement as well as minimizing reliability variation. We further evaluate PRKS with extensive ns-3 simulations. The CPS protocol described in Chapter 3 considers an one-hop broadcast problem in multi-hop inter-vehicle communication networks. We analyze the challenges of applying the PRK model in this particular setting and propose an approximated PRK model, i.e., gPRK model, that addresses the challenges. We further design principles that CPS uses to instantiate the gPRK model in inter-vehicle communications. We implement the CPS scheduling framework in an integrated platform with SUMO and ns-3 to evaluate our design. In Chapter 4, we conservatively estimate the background interference plus noise while nodes are receiving packets. In the meantime, receivers decide minimum power levels their sender should use and feedback their decisions to their senders. Senders fuse feedbacks and choose a power level that guarantees expected packet reception probability at each receivers’ side. We notice in our evaluation that guaranteeing short-term reliability causes extra concurrency loss
    corecore