116 research outputs found

    Mining Web Dynamics for Search

    Get PDF
    Billions of web users collectively contribute to a dynamic web that preserves how information sources and descriptions change over time. This dynamic process sheds light on the quality of web content, and even indicates the temporal properties of information needs expressed via queries. However, existing commercial search engines typically utilize one crawl of web content (the latest) without considering the complementary information concealed in web dynamics. As a result, the generated rankings may be biased due to the efficiency of knowledge on page or hyperlink evolution, and the time-sensitive facet within search quality, e.g., freshness, has to be neglected. While previous research efforts have been focused on exploring the temporal dimension in retrieval process, few of them showed consistent improvements on large-scale real-world archival web corpus with a broad time span.We investigate how to utilize the changes of web pages and hyperlinks to improve search quality, in terms of freshness and relevance of search results. Three applications that I have focused on are: (1) document representation, in which the anchortext (short descriptive text associated with hyperlinks) importance is estimated by considering its historical status; (2) web authority estimation, in which web freshness is quantified and utilized for controlling the authority propagation; and (3) learning to rank, in which freshness and relevance are optimized simultaneously in an adaptive way depending on query type. The contributions of this thesis are: (1) incorporate web dynamics information into critical components within search infrastructure in a principled way; and (2) empirically verify the proposed methods by conducting experiments based on (or depending on) a large-scale real-world archival web corpus, and demonstrated their superiority over existing state-of-the-art

    Information Retrieval: Recent Advances and Beyond

    Full text link
    In this paper, we provide a detailed overview of the models used for information retrieval in the first and second stages of the typical processing chain. We discuss the current state-of-the-art models, including methods based on terms, semantic retrieval, and neural. Additionally, we delve into the key topics related to the learning process of these models. This way, this survey offers a comprehensive understanding of the field and is of interest for for researchers and practitioners entering/working in the information retrieval domain

    Managing tail latency in large scale information retrieval systems

    Get PDF
    As both the availability of internet access and the prominence of smart devices continue to increase, data is being generated at a rate faster than ever before. This massive increase in data production comes with many challenges, including efficiency concerns for the storage and retrieval of such large-scale data. However, users have grown to expect the sub-second response times that are common in most modern search engines, creating a problem - how can such large amounts of data continue to be served efficiently enough to satisfy end users? This dissertation investigates several issues regarding tail latency in large-scale information retrieval systems. Tail latency corresponds to the high percentile latency that is observed from a system - in the case of search, this latency typically corresponds to how long it takes for a query to be processed. In particular, keeping tail latency as low as possible translates to a good experience for all users, as tail latency is directly related to the worst-case latency and hence, the worst possible user experience. The key idea in targeting tail latency is to move from questions such as "what is the median latency of our search engine?" to questions which more accurately capture user experience such as "how many queries take more than 200ms to return answers?" or "what is the worst case latency that a user may be subject to, and how often might it occur?" While various strategies exist for efficiently processing queries over large textual corpora, prior research has focused almost entirely on improvements to the average processing time or cost of search systems. As a first contribution, we examine some state-of-the-art retrieval algorithms for two popular index organizations, and discuss the trade-offs between them, paying special attention to the notion of tail latency. This research uncovers a number of observations that are subsequently leveraged for improved search efficiency and effectiveness. We then propose and solve a new problem, which involves processing a number of related queries together, known as multi-queries, to yield higher quality search results. We experiment with a number of algorithmic approaches to efficiently process these multi-queries, and report on the cost, efficiency, and effectiveness trade-offs present with each. Ultimately, we find that some solutions yield a low tail latency, and are hence suitable for use in real-time search environments. Finally, we examine how predictive models can be used to improve the tail latency and end-to-end cost of a commonly used multi-stage retrieval architecture without impacting result effectiveness. By combining ideas from numerous areas of information retrieval, we propose a prediction framework which can be used for training and evaluating several efficiency/effectiveness trade-off parameters, resulting in improved trade-offs between cost, result quality, and tail latency

    Recall, Robustness, and Lexicographic Evaluation

    Full text link
    Researchers use recall to evaluate rankings across a variety of retrieval, recommendation, and machine learning tasks. While there is a colloquial interpretation of recall in set-based evaluation, the research community is far from a principled understanding of recall metrics for rankings. The lack of principled understanding of or motivation for recall has resulted in criticism amongst the retrieval community that recall is useful as a measure at all. In this light, we reflect on the measurement of recall in rankings from a formal perspective. Our analysis is composed of three tenets: recall, robustness, and lexicographic evaluation. First, we formally define `recall-orientation' as sensitivity to movement of the bottom-ranked relevant item. Second, we analyze our concept of recall orientation from the perspective of robustness with respect to possible searchers and content providers. Finally, we extend this conceptual and theoretical treatment of recall by developing a practical preference-based evaluation method based on lexicographic comparison. Through extensive empirical analysis across 17 TREC tracks, we establish that our new evaluation method, lexirecall, is correlated with existing recall metrics and exhibits substantially higher discriminative power and stability in the presence of missing labels. Our conceptual, theoretical, and empirical analysis substantially deepens our understanding of recall and motivates its adoption through connections to robustness and fairness.Comment: Under revie

    Using contextual information to understand searching and browsing behavior

    Get PDF
    There is great imbalance in the richness of information on the web and the succinctness and poverty of search requests of web users, making their queries only a partial description of the underlying complex information needs. Finding ways to better leverage contextual information and make search context-aware holds the promise to dramatically improve the search experience of users. We conducted a series of studies to discover, model and utilize contextual information in order to understand and improve users' searching and browsing behavior on the web. Our results capture important aspects of context under the realistic conditions of different online search services, aiming to ensure that our scientific insights and solutions transfer to the operational settings of real world applications

    Discrimination-aware classification

    Get PDF
    Classifier construction is one of the most researched topics within the data mining and machine learning communities. Literally thousands of algorithms have been proposed. The quality of the learned models, however, depends critically on the quality of the training data. No matter which classifier inducer is applied, if the training data is incorrect, poor models will result. In this thesis, we study cases in which the input data is discriminatory and we are supposed to learn a classifier that optimizes accuracy, but does not discriminate in its predictions. Such situations occur naturally as artifacts of the data collection process when the training data is collected from different sources with different labeling criteria, when the data is generated by a biased decision process, or when the sensitive attribute, e.g., gender serves as a proxy for unobserved features. In many situations, a classifier that detects and uses the racial or gender discrimination is undesirable for legal reasons. The concept of discrimination is illustrated by the next example: Throughout the years, an employment bureau recorded various parameters of job candidates. Based on these parameters, the company wants to learn a model for partially automating the matchmaking between a job and a job candidate. A match is labeled as successful if the company hires the applicant. It turns out, however, that the historical data is biased; for higher board functions, Caucasian males are systematically being favored. A model learned directly on this data will learn this discriminatory behavior and apply it over future predictions. From an ethical and legal point of view it is of course unacceptable that a model discriminating in this way is deployed. Our proposed solutions to the discrimination problem fall into two broad categories. First, we propose pre-processing methods to remove the discrimination from the training dataset. Second, we propose solutions to the discrimination problem by directly pushing the non-discrimination constraints into classification models and post-processing of built models. We further studied the discrimination-aware classification paradigm in the presence of explanatory attributes that were correlated with the sensitive attribute, e.g., low income may be explained by the low education level. In such a case, as we show, not all discrimination can be considered bad. Therefore, we introduce a new way of measuring discrimination, by explicitly splitting it up into explainable and bad discrimination and propose methods to remove the bad discrimination only. We tried our discrimination-aware methods over real world data sets. We observed in our experiments that our methods show promising results and clearly outperform the traditional classification model w.r.t. accuracy discrimination trade-off. To conclude, we believe that discrimination-aware classification is a new and exciting area of research addressing a societally relevant problem

    Pretrained Transformers for Text Ranking: BERT and Beyond

    Get PDF
    The goal of text ranking is to generate an ordered list of texts retrieved from a corpus in response to a query. Although the most common formulation of text ranking is search, instances of the task can also be found in many natural language processing applications. This survey provides an overview of text ranking with neural network architectures known as transformers, of which BERT is the best-known example. The combination of transformers and self-supervised pretraining has been responsible for a paradigm shift in natural language processing (NLP), information retrieval (IR), and beyond. In this survey, we provide a synthesis of existing work as a single point of entry for practitioners who wish to gain a better understanding of how to apply transformers to text ranking problems and researchers who wish to pursue work in this area. We cover a wide range of modern techniques, grouped into two high-level categories: transformer models that perform reranking in multi-stage architectures and dense retrieval techniques that perform ranking directly. There are two themes that pervade our survey: techniques for handling long documents, beyond typical sentence-by-sentence processing in NLP, and techniques for addressing the tradeoff between effectiveness (i.e., result quality) and efficiency (e.g., query latency, model and index size). Although transformer architectures and pretraining techniques are recent innovations, many aspects of how they are applied to text ranking are relatively well understood and represent mature techniques. However, there remain many open research questions, and thus in addition to laying out the foundations of pretrained transformers for text ranking, this survey also attempts to prognosticate where the field is heading
    • …
    corecore