9,915 research outputs found

    Improving Table Compression with Combinatorial Optimization

    Full text link
    We study the problem of compressing massive tables within the partition-training paradigm introduced by Buchsbaum et al. [SODA'00], in which a table is partitioned by an off-line training procedure into disjoint intervals of columns, each of which is compressed separately by a standard, on-line compressor like gzip. We provide a new theory that unifies previous experimental observations on partitioning and heuristic observations on column permutation, all of which are used to improve compression rates. Based on the theory, we devise the first on-line training algorithms for table compression, which can be applied to individual files, not just continuously operating sources; and also a new, off-line training algorithm, based on a link to the asymmetric traveling salesman problem, which improves on prior work by rearranging columns prior to partitioning. We demonstrate these results experimentally. On various test files, the on-line algorithms provide 35-55% improvement over gzip with negligible slowdown; the off-line reordering provides up to 20% further improvement over partitioning alone. We also show that a variation of the table compression problem is MAX-SNP hard.Comment: 22 pages, 2 figures, 5 tables, 23 references. Extended abstract appears in Proc. 13th ACM-SIAM SODA, pp. 213-222, 200

    JPEG steganography with particle swarm optimization accelerated by AVX

    Get PDF
    Digital steganography aims at hiding secret messages in digital data transmitted over insecure channels. The JPEG format is prevalent in digital communication, and images are often used as cover objects in digital steganography. Optimization methods can improve the properties of images with embedded secret but introduce additional computational complexity to their processing. AVX instructions available in modern CPUs are, in this work, used to accelerate data parallel operations that are part of image steganography with advanced optimizations.Web of Science328art. no. e544

    Optimum buckling design of composite stiffened panels using ant colony algorithm

    Get PDF
    Optimal design of laminated composite stiffened panels of symmetric and balanced layup with different number of T-shape stiffeners is investigated and presented. The stiffened panels are simply supported and subjected to uniform biaxial compressive load. In the optimization for the maximum buckling load without weight penalty, the panel skin and the stiffened laminate stacking sequence, thickness and the height of the stiffeners are chosen as design variables. The optimization is carried out by applying an ant colony algorithm (ACA) with the ply contiguous constraint taken into account. The finite strip method is employed in the buckling analysis of the stiffened panels. The results shows that the buckling load increases dramatically with the number of stiffeners at first, and then has only a small improvement after the number of stiffeners reaches a certain value. An optimal layup of the skin and stiffener laminate has also been obtained by using the ACA. The methods presented in this paper should be applicable to the design of stiffened composite panels in similar loading conditions

    Multiscale approach for the network compression-friendly ordering

    Full text link
    We present a fast multiscale approach for the network minimum logarithmic arrangement problem. This type of arrangement plays an important role in a network compression and fast node/link access operations. The algorithm is of linear complexity and exhibits good scalability which makes it practical and attractive for using on large-scale instances. Its effectiveness is demonstrated on a large set of real-life networks. These networks with corresponding best-known minimization results are suggested as an open benchmark for a research community to evaluate new methods for this problem

    Meta-heuristic algorithms in car engine design: a literature survey

    Get PDF
    Meta-heuristic algorithms are often inspired by natural phenomena, including the evolution of species in Darwinian natural selection theory, ant behaviors in biology, flock behaviors of some birds, and annealing in metallurgy. Due to their great potential in solving difficult optimization problems, meta-heuristic algorithms have found their way into automobile engine design. There are different optimization problems arising in different areas of car engine management including calibration, control system, fault diagnosis, and modeling. In this paper we review the state-of-the-art applications of different meta-heuristic algorithms in engine management systems. The review covers a wide range of research, including the application of meta-heuristic algorithms in engine calibration, optimizing engine control systems, engine fault diagnosis, and optimizing different parts of engines and modeling. The meta-heuristic algorithms reviewed in this paper include evolutionary algorithms, evolution strategy, evolutionary programming, genetic programming, differential evolution, estimation of distribution algorithm, ant colony optimization, particle swarm optimization, memetic algorithms, and artificial immune system

    New SVD based initialization strategy for Non-negative Matrix Factorization

    Full text link
    There are two problems need to be dealt with for Non-negative Matrix Factorization (NMF): choose a suitable rank of the factorization and provide a good initialization method for NMF algorithms. This paper aims to solve these two problems using Singular Value Decomposition (SVD). At first we extract the number of main components as the rank, actually this method is inspired from [1, 2]. Second, we use the singular value and its vectors to initialize NMF algorithm. In 2008, Boutsidis and Gollopoulos [3] provided the method titled NNDSVD to enhance initialization of NMF algorithms. They extracted the positive section and respective singular triplet information of the unit matrices {C(j)}k j=1 which were obtained from singular vector pairs. This strategy aims to use positive section to cope with negative elements of the singular vectors, but in experiments we found that even replacing negative elements by their absolute values could get better results than NNDSVD. Hence, we give another method based SVD to fulfil initialization for NMF algorithms (SVD-NMF). Numerical experiments on two face databases ORL and YALE [16, 17] show that our method is better than NNDSVD
    corecore