168 research outputs found

    Improving TSP Tours Using Dynamic Programming over Tree Decompositions

    Get PDF
    Given a traveling salesman problem (TSP) tour H in graph G, a k-move is an operation which removes k edges from H, and adds k edges of G so that a new tour H\u27 is formed. The popular k-opt heuristic for TSP finds a local optimum by starting from an arbitrary tour H and then improving it by a sequence of k-moves. Until 2016, the only known algorithm to find an improving k-move for a given tour was the naive solution in time O(n^k). At ICALP\u2716 de Berg, Buchin, Jansen and Woeginger showed an O(n^{floor(2/3k)+1})-time algorithm. We show an algorithm which runs in O(n^{(1/4 + epsilon_k)k}) time, where lim_{k -> infinity} epsilon_k = 0. It improves over the state of the art for every k >= 5. For the most practically relevant case k=5 we provide a slightly refined algorithm running in O(n^{3.4}) time. We also show that for the k=4 case, improving over the O(n^3)-time algorithm of de Berg et al. would be a major breakthrough: an O(n^{3 - epsilon})-time algorithm for any epsilon > 0 would imply an O(n^{3 - delta})-time algorithm for the All Pairs Shortest Paths problem, for some delta>0

    Fine-Grained Complexity Analysis of Two Classic TSP Variants

    Get PDF
    We analyze two classic variants of the Traveling Salesman Problem using the toolkit of fine-grained complexity. Our first set of results is motivated by the Bitonic TSP problem: given a set of nn points in the plane, compute a shortest tour consisting of two monotone chains. It is a classic dynamic-programming exercise to solve this problem in O(n2)O(n^2) time. While the near-quadratic dependency of similar dynamic programs for Longest Common Subsequence and Discrete Frechet Distance has recently been proven to be essentially optimal under the Strong Exponential Time Hypothesis, we show that bitonic tours can be found in subquadratic time. More precisely, we present an algorithm that solves bitonic TSP in O(nlog2n)O(n \log^2 n) time and its bottleneck version in O(nlog3n)O(n \log^3 n) time. Our second set of results concerns the popular kk-OPT heuristic for TSP in the graph setting. More precisely, we study the kk-OPT decision problem, which asks whether a given tour can be improved by a kk-OPT move that replaces kk edges in the tour by kk new edges. A simple algorithm solves kk-OPT in O(nk)O(n^k) time for fixed kk. For 2-OPT, this is easily seen to be optimal. For k=3k=3 we prove that an algorithm with a runtime of the form O~(n3ϵ)\tilde{O}(n^{3-\epsilon}) exists if and only if All-Pairs Shortest Paths in weighted digraphs has such an algorithm. The results for k=2,3k=2,3 may suggest that the actual time complexity of kk-OPT is Θ(nk)\Theta(n^k). We show that this is not the case, by presenting an algorithm that finds the best kk-move in O(n2k/3+1)O(n^{\lfloor 2k/3 \rfloor + 1}) time for fixed k3k \geq 3. This implies that 4-OPT can be solved in O(n3)O(n^3) time, matching the best-known algorithm for 3-OPT. Finally, we show how to beat the quadratic barrier for k=2k=2 in two important settings, namely for points in the plane and when we want to solve 2-OPT repeatedly.Comment: Extended abstract appears in the Proceedings of the 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016

    Approximation Algorithms for Traveling Salesman Problems

    Get PDF
    The traveling salesman problem is the probably most famous problem in combinatorial optimization. Given a graph G and nonnegative edge costs, we want to find a closed walk in G that visits every vertex at least once and has minimum cost. We consider both the symmetric traveling salesman problem (TSP) where G is an undirected graph and the asymmetric traveling salesman problem (ATSP) where G is a directed graph. We also investigate the unit-weight special cases and the more general path versions, where we do not require the walk to be closed, but to start and end in prescribed vertices s and t. In this thesis we give improved approximation algorithms and better upper bounds on the integrality ratio of the classical linear programming relaxations for several of these traveling salesman problems. For this we use techniques arising from various parts of combinatorial optimization such as linear programming, network flows, ear-decompositions, matroids, and T-joins. Our results include a (22 + &epsilon)-approximation algorithm for ATSP (for any &epsilon > 0), the first constant upper bound on the integrality ratio for s-t-path ATSP, a new upper bound on the integrality ratio for s-t-path TSP, and a black-box reduction from s-t-path TSP to TSP

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and ϵ>0\epsilon > 0, the algorithm outputs in O(mlog4n/ϵ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+ϵ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2log2(m)/ϵ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+ϵ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm

    Tree-based decompositions of graphs on surfaces and applications to the traveling salesman problem

    Get PDF
    The tree-width and branch-width of a graph are two well-studied examples of parameters that measure how well a given graph can be decomposed into a tree structure. In this thesis we give several results and applications concerning these concepts, in particular if the graph is embedded on a surface. In the first part of this thesis we develop a geometric description of tangles in graphs embedded on a fixed surface (tangles are the obstructions for low branch-width), generalizing a result of Robertson and Seymour. We use this result to establish a relationship between the branch-width of an embedded graph and the carving-width of an associated graph, generalizing a result for the plane of Seymour and Thomas. We also discuss how these results relate to the polynomial-time algorithm to determine the branch-width of planar graphs of Seymour and Thomas, and explain why their method does not generalize to surfaces other than the sphere. We also prove a result concerning the class C_2k of minor-minimal graphs of branch-width 2k in the plane, for an integer k at least 2. We show that applying a certain construction to a class of graphs in the projective plane yields a subclass of C_2k, but also show that not all members of C_2k arise in this way if k is at least 3. The last part of the thesis is concerned with applications of graphs of bounded tree-width to the Traveling Salesman Problem (TSP). We first show how one can solve the separation problem for comb inequalities (with an arbitrary number of teeth) in linear time if the tree-width is bounded. In the second part, we modify an algorithm of Letchford et al. using tree-decompositions to obtain a practical method for separating a different class of TSP inequalities, called simple DP constraints, and study their effectiveness for solving TSP instances.Ph.D.Committee Chair: Thomas, Robin; Committee Co-Chair: Cook, William J.; Committee Member: Dvorak, Zdenek; Committee Member: Parker, Robert G.; Committee Member: Yu, Xingxin

    A time- and space-optimal algorithm for the many-visits TSP

    Full text link
    The many-visits traveling salesperson problem (MV-TSP) asks for an optimal tour of nn cities that visits each city cc a prescribed number kck_c of times. Travel costs may be asymmetric, and visiting a city twice in a row may incur a non-zero cost. The MV-TSP problem finds applications in scheduling, geometric approximation, and Hamiltonicity of certain graph families. The fastest known algorithm for MV-TSP is due to Cosmadakis and Papadimitriou (SICOMP, 1984). It runs in time nO(n)+O(n3logckc)n^{O(n)} + O(n^3 \log \sum_c k_c ) and requires nΘ(n)n^{\Theta(n)} space. An interesting feature of the Cosmadakis-Papadimitriou algorithm is its \emph{logarithmic} dependence on the total length ckc\sum_c k_c of the tour, allowing the algorithm to handle instances with very long tours. The \emph{superexponential} dependence on the number of cities in both the time and space complexity, however, renders the algorithm impractical for all but the narrowest range of this parameter. In this paper we improve upon the Cosmadakis-Papadimitriou algorithm, giving an MV-TSP algorithm that runs in time 2O(n)2^{O(n)}, i.e.\ \emph{single-exponential} in the number of cities, using \emph{polynomial} space. Our algorithm is deterministic, and arguably both simpler and easier to analyse than the original approach of Cosmadakis and Papadimitriou. It involves an optimization over directed spanning trees and a recursive, centroid-based decomposition of trees.Comment: Small fixes, journal versio

    Fine-Grained Complexity of k-OPT in Bounded-Degree Graphs for Solving TSP

    Get PDF
    The Traveling Salesman Problem asks to find a minimum-weight Hamiltonian cycle in an edge-weighted complete graph. Local search is a widely-employed strategy for finding good solutions to TSP. A popular neighborhood operator for local search is k-opt, which turns a Hamiltonian cycle C into a new Hamiltonian cycle C\u27 by replacing k edges. We analyze the problem of determining whether the weight of a given cycle can be decreased by a k-opt move. Earlier work has shown that (i) assuming the Exponential Time Hypothesis, there is no algorithm that can detect whether or not a given Hamiltonian cycle C in an n-vertex input can be improved by a k-opt move in time f(k) n^o(k / log k) for any function f, while (ii) it is possible to improve on the brute-force running time of O(n^k) and save linear factors in the exponent. Modern TSP heuristics are very successful at identifying the most promising edges to be used in k-opt moves, and experiments show that very good global solutions can already be reached using only the top-O(1) most promising edges incident to each vertex. This leads to the following question: can improving k-opt moves be found efficiently in graphs of bounded degree? We answer this question in various regimes, presenting new algorithms and conditional lower bounds. We show that the aforementioned ETH lower bound also holds for graphs of maximum degree three, but that in bounded-degree graphs the best improving k-move can be found in time O(n^((23/135+epsilon_k)k)), where lim_{k -> infty} epsilon_k = 0. This improves upon the best-known bounds for general graphs. Due to its practical importance, we devote special attention to the range of k in which improving k-moves in bounded-degree graphs can be found in quasi-linear time. For k <= 7, we give quasi-linear time algorithms for general weights. For k=8 we obtain a quasi-linear time algorithm when the weights are bounded by O(polylog n). On the other hand, based on established fine-grained complexity hypotheses about the impossibility of detecting a triangle in edge-linear time, we prove that the k = 9 case does not admit quasi-linear time algorithms. Hence we fully characterize the values of k for which quasi-linear time algorithms exist for polylogarithmic weights on bounded-degree graphs
    corecore