1,068 research outputs found

    Modelling and Analysis of TCP Performance in Wireless Multihop Networks

    Get PDF
    Researchers have used extensive simulation and experimental studies to understand TCP performance in wireless multihop networks. In contrast, the objective of this paper is to theoretically analyze TCP performance in this environment. By examining the case of running one TCP session over a string topology, a system model for analyzing TCP performance in multihop wireless networks is proposed, which considers packet buffering, contention of nodes for access to the wireless channel, and spatial reuse of the wireless channel. Markov chain modelling is applied to analyze this system model. Analytical results show that when the number of hops that the TCP session crosses is fixed, the TCP throughput is independent of the TCP congestion window size. When the number of hops increases from one, the TCP throughput decreases first, and then stabilizes when the number of hops becomes large. The analysis is validated by comparing the numerical and simulation result

    Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet

    Get PDF
    In this paper, we introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme at the Internet gateway for wired-to-wireless TCP flows. Furthermore, we analyze the causes for the unfairness of oncoming TCP flows and propose a scheme to throttle aggressive wired-to-wireless TCP flows at the Internet gateway to achieve nearly optimal fairness. Thus, we denote the introduced congestion control scheme TCP with Gateway Adaptive Pacing (TCP-GAP). For wireless-to-wired flows, we propose an adaptive pacing scheme at the TCP sender. In contrast to previous work, TCP-GAP does not impose any control traffic overhead for achieving fairness among active TCP flows. Moreover, TCP-GAP can be incrementally deployed because it does not require any modifications of TCP in the wired part of the network and is fully TCP-compatible. Extensive simulations using ns-2 show that TCPGAP is highly responsive to varying traffic conditions, provides nearly optimal fairness in all scenarios and achieves up to 42% more goodput than TCP NewReno

    Cross layer metrics for improving transport protocols in multihop wireless networks

    No full text
    Session Posters & DemosInternational audienceNotre travail s'inscrit dans l'amélioration des protocoles de transport dans les réseaux sans fil ad hoc multisauts. Nous présentons différentes métriques provenant des couches physiques ou liaison pour améliorer les performances de la phase de contrôle de congestion de TCP. Ce papier introduit une classification des métriques inter-couches pour améliorer le niveau transport

    TCP with Adaptive Pacing for Multihop Wireless Networks

    Get PDF
    In this paper, we introduce a novel congestion control algorithm for TCP over multihop IEEE 802.11 wireless networks implementing rate-based scheduling of transmissions within the TCP congestion window. We show how a TCP sender can adapt its transmission rate close to the optimum using an estimate of the current 4-hop propagation delay and the coefficient of variation of recently measured round-trip times. The novel TCP variant is denoted as TCP with Adaptive Pacing (TCP-AP). Opposed to previous proposals for improving TCP over multihop IEEE 802.11 networks, TCP-AP retains the end-to-end semantics of TCP and does neither rely on modifications on the routing or the link layer nor requires cross-layer information from intermediate nodes along the path. A comprehensive simulation study using ns-2 shows that TCP-AP achieves up to 84% more goodput than TCP NewReno, provides excellent fairness in almost all scenarios, and is highly responsive to changing traffic conditions
    • …
    corecore