103 research outputs found

    Fundamental Approaches to Software Engineering

    Get PDF
    This open access book constitutes the proceedings of the 23rd International Conference on Fundamental Approaches to Software Engineering, FASE 2020, which took place in Dublin, Ireland, in April 2020, and was held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020. The 23 full papers, 1 tool paper and 6 testing competition papers presented in this volume were carefully reviewed and selected from 81 submissions. The papers cover topics such as requirements engineering, software architectures, specification, software quality, validation, verification of functional and non-functional properties, model-driven development and model transformation, software processes, security and software evolution

    Formal Methods for Constraint-Based Testing and Reversible Debugging in Erlang

    Full text link
    Tesis por compendio[ES] Erlang es un lenguaje de programación funcional con concurrencia mediante paso de mensajes basado en el modelo de actores. Éstas y otras características lo hacen especialmente adecuado para aplicaciones distribuidas en tiempo real acrítico. En los últimos años, la popularidad de Erlang ha aumentado debido a la demanda de servicios concurrentes. No obstante, desarrollar sistemas Erlang libres de errores es un reto considerable. A pesar de que Erlang evita muchos problemas por diseño (por ejemplo, puntos muertos), algunos otros problemas pueden aparecer. En este contexto, las técnicas de testing y depuración basadas en métodos formales pueden ser útiles para detectar, localizar y arreglar errores de programación en Erlang. En esta tesis proponemos varios métodos para testing y depuración en Erlang. En particular, estos métodos están basados en modelos semánticos para concolic testing, pruebas basadas en propiedades, depuración reversible con consistencia causal y repetición reversible con consistencia causal de programas Erlang. Además, probamos formalmente las principales propiedades de nuestras propuestas y diseñamos herramientas de código abierto que implementan estos métodos.[CA] Erlang és un llenguatge de programació funcional amb concurrència mitjançant pas de missatges basat en el model d'actors. Estes i altres característiques el fan especialment adequat per a aplicacions distribuïdes en temps real acrític. En els últims anys, la popularitat d'Erlang ha augmentat degut a la demanda de servicis concurrents. No obstant, desenvolupar sistemes Erlang lliures d'errors és un repte considerable. Encara que Erlang evita molts problemes per disseny (per exemple, punts morts), alguns altres problemes poden aparéixer. En este context, les tècniques de testing y depuració basades en mètodes formals poden ser útils per a detectar, localitzar y arreglar errors de programació en Erlang. En esta tesis proposem diversos mètodes per a testing i depuració en Erlang. En particular, estos mètodes estan basats en models semàntics per a concolic testing, testing basat en propietats, depuració reversible amb consistència causal i repetició reversible amb consistència causal de programes Erlang. A més, provem formalment les principals propietats de les nostres propostes i dissenyem ferramentes de codi obert que implementen estos mètodes.[EN] Erlang is a message-passing concurrent, functional programming language based on the actor model. These and other features make it especially appropriate for distributed, soft real-time applications. In the recent years, Erlang's popularity has increased due to the demand for concurrent services. However, developing error-free systems in Erlang is quite a challenge. Although Erlang avoids many problems by design (e.g., deadlocks), some other problems may appear. Here, testing and debugging techniques based on formal methods may be helpful to detect, locate and fix programming errors in Erlang. In this thesis we propose several methods for testing and debugging in Erlang. In particular, these methods are based on semantics models for concolic testing, property-based testing, causal-consistent reversible debugging and causal-consistent replay debugging of Erlang programs. We formally prove the main properties of our proposals and design open-source tools that implement these methods.Palacios Corella, A. (2020). Formal Methods for Constraint-Based Testing and Reversible Debugging in Erlang [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/139076TESISCompendi

    Principles of Security and Trust: 7th International Conference, POST 2018, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings

    Get PDF
    authentication; computer science; computer software selection and evaluation; cryptography; data privacy; formal logic; formal methods; formal specification; internet; privacy; program compilers; programming languages; security analysis; security systems; semantics; separation logic; software engineering; specifications; verification; world wide we

    Doctor of Philosophy

    Get PDF
    dissertationIn computer science, functional software testing is a method of ensuring that software gives expected output on specific inputs. Software testing is conducted to ensure desired levels of quality in light of uncertainty resulting from the complexity of software. Most of today's software is written by people and software development is a creative activity. However, due to the complexity of computer systems and software development processes, this activity leads to a mismatch between the expected software functionality and the implemented one. If not addressed in a timely and proper manner, this mismatch can cause serious consequences to users of the software, such as security and privacy breaches, financial loss, and adversarial human health issues. Because of manual effort, software testing is costly. Software testing that is performed without human intervention is automatic software testing and it is one way of addressing the issue. In this work, we build upon and extend several techniques for automatic software testing. The techniques do not require any guidance from the user. Goals that are achieved with the techniques are checking for yet unknown errors, automatically testing object-oriented software, and detecting malicious software. To meet these goals, we explored several techniques and related challenges: automatic test case generation, runtime verification, dynamic symbolic execution, and the type and size of test inputs for efficient detection of malicious software via machine learning. Our work targets software written in the Java programming language, though the techniques are general and applicable to other languages. We performed an extensive evaluation on freely available Java software projects, a flight collision avoidance system, and thousands of applications for the Android operating system. Evaluation results show to what extent dynamic symbolic execution is applicable in testing object-oriented software, they show correctness of the flight system on millions of automatically customized and generated test cases, and they show that simple and relatively small inputs in random testing can lead to effective malicious software detection

    Automated Software Transplantation

    Get PDF
    Automated program repair has excited researchers for more than a decade, yet it has yet to find full scale deployment in industry. We report our experience with SAPFIX: the first deployment of automated end-to-end fault fixing, from test case design through to deployed repairs in production code. We have used SAPFIX at Facebook to repair 6 production systems, each consisting of tens of millions of lines of code, and which are collectively used by hundreds of millions of people worldwide. In its first three months of operation, SAPFIX produced 55 repair candidates for 57 crashes reported to SAPFIX, of which 27 have been deem as correct by developers and 14 have been landed into production automatically by SAPFIX. SAPFIX has thus demonstrated the potential of the search-based repair research agenda by deploying, to hundreds of millions of users worldwide, software systems that have been automatically tested and repaired. Automated software transplantation (autotransplantation) is a form of automated software engineering, where we use search based software engineering to be able to automatically move a functionality of interest from a ‘donor‘ program that implements it into a ‘host‘ program that lacks it. Autotransplantation is a kind of automated program repair where we repair the ‘host‘ program by augmenting it with the missing functionality. Automated software transplantation would open many exciting avenues for software development: suppose we could autotransplant code from one system into another, entirely unrelated, system, potentially written in a different programming language. Being able to do so might greatly enhance the software engineering practice, while reducing the costs. Automated software transplantation manifests in two different flavors: monolingual, when the languages of the host and donor programs is the same, or multilingual when the languages differ. This thesis introduces a theory of automated software transplantation, and two algorithms implemented in two tools that achieve this: µSCALPEL for monolingual software transplantation and τSCALPEL for multilingual software transplantation. Leveraging lightweight annotation, program analysis identifies an organ (interesting behavior to transplant); testing validates that the organ exhibits the desired behavior during its extraction and after its implantation into a host. We report encouraging results: in 14 of 17 monolingual transplantation experiments involving 6 donors and 4 hosts, popular real-world systems, we successfully autotransplanted 6 new functionalities; and in 10 out of 10 multlingual transplantation experiments involving 10 donors and 10 hosts, popular real-world systems written in 4 different programming languages, we successfully autotransplanted 10 new functionalities. That is, we have passed all the test suites that validates the new functionalities behaviour and the fact that the initial program behaviour is preserved. Additionally, we have manually checked the behaviour exercised by the organ. Autotransplantation is also very useful: in just 26 hours computation time we successfully autotransplanted the H.264 video encoding functionality from the x264 system to the VLC media player, a task that is currently done manually by the developers of VLC, since 12 years ago. We autotransplanted call graph generation and indentation for C programs into Kate, (a popular KDE based test editor used as an IDE by a lot of C developers) two features currently missing from Kate, but requested by the users of Kate. Autotransplantation is also efficient: the total runtime across 15 monolingual transplants is 5 hours and a half; the total runtime across 10 multilingual transplants is 33 hours
    • …
    corecore