306,799 research outputs found

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/

    Survey of dynamic scheduling in manufacturing systems

    Get PDF

    An agent system to support student teams working online

    Get PDF
    Online learning is now a reality, with distributed learning and blended learning becoming more widely used in Higher Education. Novel ways in which undergraduate and postgraduate learning material can be presented are being developed, and methods for helping students to learn online are needed, especially if we require them to collaborate with each other on learning activities. Agents to provide a supporting role for students have evolved from Artificial Intelligence research, and their strength lies in their ease of operation over networks as well as their ability to act in response to stimuli. In this paper an application of a software agent is described, aimed at supporting students working on team projects in the online learning environment. Online teamwork is problematical for a number of reasons, such as getting acquainted with team members, finding out about other team members’ abilities, agreeing who should do which tasks, communications between team members and keeping up to date with progress that has been made on the project. Software agents have the ability to monitor progress and to offer advice by operating in the background, acting autonomously when the need arises. An agent prototype has been developed in Prolog to perform a limited set of functions to support students. Team projects have a planning, doing and completing stage, all of which require them to have some sort of agent support. This agent at present supports part of the planning stage, by prompting the students to input their likes, dislikes and abilities for a selection of task areas defined for the project. The agent then allocates the various tasks to the students according to predetermined rules. The results of a trial carried out using teams working on projects, on campus, indicate that students like the idea of using this agent to help with allocating tasks. They also agreed that agent support of this type would probably be helpful to both students working on team projects with face to face contact, as well as for teams working solely online. Work is ongoing to add more functionality to the agent and to evaluate the agent more widely
    • …
    corecore