452 research outputs found

    Hydrologic Data Assimilation

    Get PDF

    Multiscale assimilation of Advanced Microwave Scanning Radiometer-EOS snow water equivalent and Moderate Resolution Imaging Spectroradiometer snow cover fraction observations in northern Colorado

    Get PDF
    Eight years (2002–2010) of Advanced Microwave Scanning Radiometer–EOS (AMSR-E) snow water equivalent (SWE) retrievals and Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) observations are assimilated separately or jointly into the Noah land surface model over a domain in Northern Colorado. A multiscale ensemble Kalman filter (EnKF) is used, supplemented with a rule-based update. The satellite data are either left unscaled or are scaled for anomaly assimilation. The results are validated against in situ observations at 14 high-elevation Snowpack Telemetry (SNOTEL) sites with typically deep snow and at 4 lower-elevation Cooperative Observer Program (COOP) sites. Assimilation of coarse-scale AMSR-E SWE and fine-scale MODIS SCF observations both result in realistic spatial SWE patterns. At COOP sites with shallow snowpacks, AMSR-E SWE and MODIS SCF data assimilation are beneficial separately, and joint SWE and SCF assimilation yields significantly improved root-mean-square error and correlation values for scaled and unscaled data assimilation. In areas of deep snow where the SNOTEL sites are located, however, AMSR-E retrievals are typically biased low and assimilation without prior scaling leads to degraded SWE estimates. Anomaly SWE assimilation could not improve the interannual SWE variations in the assimilation results because the AMSR-E retrievals lack realistic interannual variability in deep snowpacks. SCF assimilation has only a marginal impact at the SNOTEL locations because these sites experience extended periods of near-complete snow cover. Across all sites, SCF assimilation improves the timing of the onset of the snow season but without a net improvement of SWE amounts

    Hydrologic Remote Sensing and Land Surface Data Assimilation

    Get PDF
    Accurate, reliable and skillful forecasting of key environmental variables such as soil moisture and snow are of paramount importance due to their strong influence on many water resources applications including flood control, agricultural production and effective water resources management which collectively control the behavior of the climate system. Soil moisture is a key state variable in land surface?atmosphere interactions affecting surface energy fluxes, runoff and the radiation balance. Snow processes also have a large influence on land-atmosphere energy exchanges due to snow high albedo, low thermal conductivity and considerable spatial and temporal variability resulting in the dramatic change on surface and ground temperature. Measurement of these two variables is possible through variety of methods using ground-based and remote sensing procedures. Remote sensing, however, holds great promise for soil moisture and snow measurements which have considerable spatial and temporal variability. Merging these measurements with hydrologic model outputs in a systematic and effective way results in an improvement of land surface model prediction. Data Assimilation provides a mechanism to combine these two sources of estimation. Much success has been attained in recent years in using data from passive microwave sensors and assimilating them into the models. This paper provides an overview of the remote sensing measurement techniques for soil moisture and snow data and describes the advances in data assimilation techniques through the ensemble filtering, mainly Ensemble Kalman filter (EnKF) and Particle filter (PF), for improving the model prediction and reducing the uncertainties involved in prediction process. It is believed that PF provides a complete representation of the probability distribution of state variables of interests (according to sequential Bayes law) and could be a strong alternative to EnKF which is subject to some limitations including the linear updating rule and assumption of jointly normal distribution of errors in state variables and observation

    Evaluation of soil moisture downscaling using a simple thermal-based proxy - the REMEDHUS network (Spain) example

    No full text
    Soil moisture retrieved from satellite microwave remote sensing normally has spatial resolution on the order of tens of kilometers, which are too coarse for many regional hydrological applications such as agriculture monitoring and drought prediction. Therefore, various downscaling methods have been proposed to enhance the spatial resolution of satellite soil moisture products. The aim of this study is to investigate the validity and robustness of the simple vegetation temperature condition index (VTCI) downscaling scheme over a dense soil moisture observational network (REMEDHUS) in Spain. First, the optimized VTCI was determined through sensitivity analyses of VTCI to surface temperature, vegetation index, cloud, topography, and land cover heterogeneity, using data from Moderate Resolution Imaging Spectroradiometer∌(MODIS) and MSG SEVIRI (METEOSAT Second Generation-Spinning Enhanced Visible and Infrared Imager). Then the downscaling scheme was applied to improve the spatial resolution of the European Space Agency's Water Cycle Multi-mission Observation Strategy and Climate Change Initiative (ESA CCI) soil moisture, which is a merged product based on both active and passive microwave observations. The results from direct validation against soil moisture observations, spatial pattern comparison, as well as seasonal and land use analyses show that the downscaling method can significantly improve the spatial details of CCI soil moisture while maintaining the accuracy of CCI soil moisture. The accuracy level is comparable to other downscaling methods that were also validated against the REMEDHUS network. Furthermore, slightly better performance of MSG SEVIRI over MODIS was observed, which suggests the high potential of applying a geostationary satellite for downscaling soil moisture in the future. Overall, considering the simplicity, limited data requirements and comparable accuracy level to other complex methods, the VTCI downscaling method can facilitate relevant hydrological applications that require high spatial and temporal resolution soil moisture. © 2015 Author(s)

    Désagrégation de l'humidité du sol issue des produits satellitaires micro-ondes passives et exploration de son utilisation pour l'amélioration de la modélisation et la prévision hydrologique

    Get PDF
    De plus en plus de produits satellitaires en micro-ondes passives sont disponibles. Cependant, leur large rĂ©solution spatiale (25-50 km) n’en font pas un outil adĂ©quat pour des applications hydrologiques Ă  une Ă©chelle locale telles que la modĂ©lisation et la prĂ©vision hydrologiques. Dans de nombreuses Ă©tudes, une dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol des produits satellites micro-ondes est faite puis validĂ©e avec des mesures in-situ. Toutefois, l’utilisation de ces donnĂ©es issues d’une dĂ©sagrĂ©gation d’échelle n’a pas encore Ă©tĂ© pleinement Ă©tudiĂ©e pour des applications en hydrologie. Ainsi, l’objectif de cette thĂšse est de proposer une mĂ©thode de dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol issue de donnĂ©es satellitaires en micro-ondes passives (Satellite Passive Microwave Active and Passive - SMAP) Ă  diffĂ©rentes rĂ©solutions spatiales afin d’évaluer leur apport sur l’amĂ©lioration potentielle des modĂ©lisations et prĂ©visions hydrologiques. À partir d’un modĂšle de forĂȘt alĂ©atoire, une dĂ©sagrĂ©gation d’échelle de l’humiditĂ© du sol de SMAP l’amĂšne de 36-km de rĂ©solution initialement Ă  des produits finaux Ă  9-, 3- et 1-km de rĂ©solution. Les prĂ©dicteurs utilisĂ©s sont Ă  haute rĂ©solution spatiale et de sources diffĂ©rentes telles que Sentinel-1A, MODIS et SRTM. L'humiditĂ© du sol issue de cette dĂ©sagrĂ©gation d’échelle est ensuite assimilĂ©e dans un modĂšle hydrologique distribuĂ© Ă  base physique pour tenter d’amĂ©liorer les sorties de dĂ©bit. Ces expĂ©riences sont menĂ©es sur les bassins versants des riviĂšres Susquehanna (de grande taille) et Upper-Susquehanna (en comparaison de petite taille), tous deux situĂ©s aux États-Unis. De plus, le modĂšle assimile aussi des donnĂ©es d’humiditĂ© du sol en profondeur issue d’une extrapolation verticale des donnĂ©es SMAP. Par ailleurs, les donnĂ©es d’humiditĂ© du sol SMAP et les mesures in-situ sont combinĂ©es par la technique de fusion conditionnelle. Ce produit de fusion SMAP/in-situ est assimilĂ© dans le modĂšle hydrologique pour tenter d’amĂ©liorer la prĂ©vision hydrologique sur le bassin versant Au Saumon situĂ© au QuĂ©bec. Les rĂ©sultats montrent que l'utilisation de l’humiditĂ© du sol Ă  fine rĂ©solution spatiale issue de la dĂ©sagrĂ©gation d’échelle amĂ©liore la reprĂ©sentation de la variabilitĂ© spatiale de l’humiditĂ© du sol. En effet, le produit Ă  1- km de rĂ©solution fournit plus de dĂ©tails que les produits Ă  3- et 9-km ou que le produit SMAP de base Ă  36-km de rĂ©solution. De mĂȘme, l’utilisation du produit de fusion SMAP/ in-situ amĂ©liore la qualitĂ© et la reprĂ©sentation spatiale de l’humiditĂ© du sol. Sur le bassin versant Susquehanna, la modĂ©lisation hydrologique s’amĂ©liore avec l’assimilation du produit de dĂ©sagrĂ©gation d’échelle Ă  9-km, sans avoir recours Ă  des rĂ©solutions plus fines. En revanche, sur le bassin versant Upper-Susquehanna, c’est le produit avec la rĂ©solution spatiale la plus fine Ă  1- km qui offre les meilleurs rĂ©sultats de modĂ©lisation hydrologique. L’assimilation de l’humiditĂ© du sol en profondeur issue de l’extrapolation verticale des donnĂ©es SMAP n’amĂ©liore que peu la qualitĂ© du modĂšle hydrologique. Par contre, l’assimilation du produit de fusion SMAP/in-situ sur le bassin versant Au Saumon amĂ©liore la qualitĂ© de la prĂ©vision du dĂ©bit, mĂȘme si celle-ci n’est pas trĂšs significative.Abstract: The availability of satellite passive microwave soil moisture is increasing, yet its spatial resolution (i.e., 25-50 km) is too coarse to use for local scale hydrological applications such as streamflow simulation and forecasting. Many studies have attempted to downscale satellite passive microwave soil moisture products for their validation with in-situ soil moisture measurements. However, their use for hydrological applications has not yet been fully explored. Thus, the objective of this thesis is to downscale the satellite passive microwave soil moisture (i.e., Satellite Microwave Active and Passive - SMAP) to a range of spatial resolutions and explore its value in improving streamflow simulation and forecasting. The random forest machine learning technique was used to downscale the SMAP soil moisture from 36-km to 9-, 3- and 1-km spatial resolutions. A combination of host of high-resolution predictors derived from different sources including Sentinel-1A, MODIS and SRTM were used for downscaling. The downscaled SMAP soil moisture was then assimilated into a physically-based distributed hydrological model for improving streamflow simulation for Susquehanna (larger in size) and Upper Susquehanna (relatively smaller in size) watersheds, located in the United States. In addition, the vertically extrapolated SMAP soil moisture was assimilated into the model. On the other hand, the SMAP and in-situ soil moisture were merged using the conditional merging technique and the merged SMAP/in-situ soil moisture was then assimilated into the model to improve streamflow forecast over the au Saumon watershed. The results show that the downscaling improved the spatial variability of soil moisture. Indeed, the 1-km downscaled SMAP soil moisture presented a higher spatial detail of soil moisture than the 3-, 9- or original resolution (36-km) SMAP product. Similarly, the merging of SMAP and in-situ soil moisture improved the accuracy as well as spatial representation soil moisture. Interestingly, the assimilation of the 9-km downscaled SMAP soil moisture significantly improved the accuracy of streamflow simulation for the Susquehanna watershed without the need of going to higher spatial resolution, whereas for the Upper Susquehanna watershed the 1-km downscaled SMAP showed better results than the coarser resolutions. The assimilation of vertically extrapolated SMAP soil moisture only slightly further improved the accuracy of the streamflow simulation. On the other hand, the assimilation of merged SMAP/in-situ soil moisture for the au Saumon watershed improved the accuracy of streamflow forecast, yet the improvement was not that significant. Overall, this study demonstrated the potential of satellite passive microwave soil moisture for streamflow simulation and forecasting

    Evapotranspiration Estimates Derived Using Multi-Platform Remote Sensing in a Semiarid Region

    Get PDF
    Evapotranspiration (ET) is a key component of the water balance, especially in arid and semiarid regions. The current study takes advantage of spatially-distributed, near real-time information provided by satellite remote sensing to develop a regional scale ET product derived from remotely-sensed observations. ET is calculated by scaling PET estimated from Moderate Resolution Imaging Spectroradiometer (MODIS) products with downscaled soil moisture derived using the Soil Moisture Ocean Salinity (SMOS) satellite and a second order polynomial regression formula. The MODis-Soil Moisture ET (MOD-SMET) estimates are validated using four flux tower sites in southern Arizona USA, a calibrated empirical ET model, and model output from Version 2 of the North American Land Data Assimilation System (NLDAS-2). Validation against daily eddy covariance ET indicates correlations between 0.63 and 0.83 and root mean square errors (RMSE) between 40 and 96 W/m2. MOD-SMET estimates compare well to the calibrated empirical ET model, with a −0.14 difference in correlation between sites, on average. By comparison, NLDAS-2 models underestimate daily ET compared to both flux towers and MOD-SMET estimates. Our analysis shows the MOD-SMET approach to be effective for estimating ET. Because it requires limited ancillary ground-based data and no site-specific calibration, the method is applicable to regions where ground-based measurements are not available

    Downscaling GLDAS Soil Moisture Data in East Asia through Fusion of Multi-Sensors by Optimizing Modified Regression Trees

    Get PDF
    Soilmoisture is a key part of Earth's climate systems, including agricultural and hydrological cycles. Soil moisture data from satellite and numerical models is typically provided at a global scale with coarse spatial resolution, which is not enough for local and regional applications. In this study, a soil moisture downscaling model was developed using satellite-derived variables targeting Global Land Data Assimilation System (GLDAS) soil moisture as a reference dataset in East Asia based on the optimization of a modified regression tree. A total of six variables, Advanced Microwave Scanning Radiometer 2 (AMSR2) and Advanced SCATterometer (ASCAT) soil moisture products, Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM), and MODerate resolution Imaging Spectroradiometer (MODIS) products, including Land Surface Temperature, Normalized Difference Vegetation Index, and land cover, were used as input variables. The optimization was conducted through a pruning approach for operational use, and finally 59 rules were extracted based on root mean square errors (RMSEs) and correlation coefficients (r). The developed downscaling model showed a good modeling performance (r = 0.79, RMSE = 0.056 m(3)center dot m(3), and slope = 0.74). The 1 km downscaled soil moisture showed similar time series patterns with both GLDAS and ground soil moisture and good correlation with ground soil moisture (average r = 0.47, average RMSD = 0.038 m(3)center dot m(3)) at 14 ground stations. The spatial distribution of 1 km downscaled soil moisture reflected seasonal and regional characteristics well, although the model did not result in good performance over a few areas such as Southern China due to very high cloud cover rates. The results of this study are expected to be helpful in operational use to monitor soil moisture throughout East Asia since the downscaling model produces daily high resolution (1 km) real time soil moisture with a low computational demand. This study yielded a promising result to operationally produce daily high resolution soil moisture data from multiple satellite sources, although there are yet several limitations. In future research, more variables including Global Precipitation Measurement (GPM) precipitation, Soil Moisture Active Passive (SMAP) soil moisture, and other vegetation indices will be integrated to improve the performance of the proposed soil moisture downscaling model.ope

    Land Surface Verification Toolkit (LVT) - A Generalized Framework for Land Surface Model Evaluation

    Get PDF
    Model evaluation and verification are key in improving the usage and applicability of simulation models for real-world applications. In this article, the development and capabilities of a formal system for land surface model evaluation called the Land surface Verification Toolkit (LVT) is described. LVT is designed to provide an integrated environment for systematic land model evaluation and facilitates a range of verification approaches and analysis capabilities. LVT operates across multiple temporal and spatial scales and employs a large suite of in-situ, remotely sensed and other model and reanalysis datasets in their native formats. In addition to the traditional accuracy-based measures, LVT also includes uncertainty and ensemble diagnostics, information theory measures, spatial similarity metrics and scale decomposition techniques that provide novel ways for performing diagnostic model evaluations. Though LVT was originally designed to support the land surface modeling and data assimilation framework known as the Land Information System (LIS), it also supports hydrological data products from other, non-LIS environments. In addition, the analysis of diagnostics from various computational subsystems of LIS including data assimilation, optimization and uncertainty estimation are supported within LVT. Together, LIS and LVT provide a robust end-to-end environment for enabling the concepts of model data fusion for hydrological applications. The evolving capabilities of LVT framework are expected to facilitate rapid model evaluation efforts and aid the definition and refinement of formal evaluation procedures for the land surface modeling community
    • 

    corecore