77,271 research outputs found

    Improving Software Citation and Credit

    Get PDF
    The past year has seen movement on several fronts for improving software citation, including the Center for Open Science's Transparency and Openness Promotion (TOP) Guidelines, the Software Publishing Special Interest Group that was started at January's AAS meeting in Seattle at the request of that organization's Working Group on Astronomical Software, a Sloan-sponsored meeting at GitHub in San Francisco to begin work on a cohesive research software citation-enabling platform, the work of Force11 to "transform and improve" research communication, and WSSSPE's ongoing efforts that include software publication, citation, credit, and sustainability. Brief reports on these efforts were shared at the BoF, after which participants discussed ideas for improving software citation, generating a list of recommendations to the community of software authors, journal publishers, ADS, and research authors. The discussion, recommendations, and feedback will help form recommendations for software citation to those publishers represented in the Software Publishing Special Interest Group and the broader community.Comment: Birds of a Feather session organized by the Astrophysics Source Code Library (ASCL, http://ascl.net/ ); to be published in Proceedings of ADASS XXV (Sydney, Australia; October, 2015). 4 page

    Making research software FAIR and citable

    Get PDF
    There is growing acknowledgment that software constitutes a valid research output. As such, it must be made available under the FAIR Principles for Research Software (FAIR4RS). Software publication with rich metadata allows researchers to provide their software in such a way, thus enabling better reproducibility of research results obtained using software, more credit for research software creators through citation, and improved sustainability. Currently, FAIR software publication is not common practice due to a lack of incentives, of clearly defined processes, and of publication support through tools and infrastructures. This talk presents the context of, and practical approaches to, automated FAIR4RS software publication: improving citation metadata for research software with the Citation File Format, and automating software publication with rich metadata using the HERMES workflow for continuous integration systems

    Report on the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2)

    Get PDF
    This technical report records and discusses the Second Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE2). The report includes a description of the alternative, experimental submission and review process, two workshop keynote presentations, a series of lightning talks, a discussion on sustainability, and five discussions from the topic areas of exploring sustainability; software development experiences; credit & incentives; reproducibility & reuse & sharing; and code testing & code review. For each topic, the report includes a list of tangible actions that were proposed and that would lead to potential change. The workshop recognized that reliance on scientific software is pervasive in all areas of world-leading research today. The workshop participants then proceeded to explore different perspectives on the concept of sustainability. Key enablers and barriers of sustainable scientific software were identified from their experiences. In addition, recommendations with new requirements such as software credit files and software prize frameworks were outlined for improving practices in sustainable software engineering. There was also broad consensus that formal training in software development or engineering was rare among the practitioners. Significant strides need to be made in building a sense of community via training in software and technical practices, on increasing their size and scope, and on better integrating them directly into graduate education programs. Finally, journals can define and publish policies to improve reproducibility, whereas reviewers can insist that authors provide sufficient information and access to data and software to allow them reproduce the results in the paper. Hence a list of criteria is compiled for journals to provide to reviewers so as to make it easier to review software submitted for publication as a “Software Paper.

    Report on the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3)

    Get PDF
    This report records and discusses the Third Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE3). The report includes a description of the keynote presentation of the workshop, which served as an overview of sustainable scientific software. It also summarizes a set of lightning talks in which speakers highlighted to-the-point lessons and challenges pertaining to sustaining scientific software. The final and main contribution of the report is a summary of the discussions, future steps, and future organization for a set of self-organized working groups on topics including developing pathways to funding scientific software; constructing useful common metrics for crediting software stakeholders; identifying principles for sustainable software engineering design; reaching out to research software organizations around the world; and building communities for software sustainability. For each group, we include a point of contact and a landing page that can be used by those who want to join that group's future activities. The main challenge left by the workshop is to see if the groups will execute these activities that they have scheduled, and how the WSSSPE community can encourage this to happen

    The State of Sustainable Research Software: Results from the Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE5.1)

    Get PDF
    This article summarizes motivations, organization, and activities of the Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE5.1) held in Manchester, UK in September 2017. The WSSSPE series promotes sustainable research software by positively impacting principles and best practices, careers, learning, and credit. This article discusses the Code of Conduct, idea papers, position papers, experience papers, demos, and lightning talks presented during the workshop. The main part of the article discusses the speed-blogging groups that formed during the meeting, along with the outputs of those sessions

    Summary of the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1)

    Get PDF
    Challenges related to development, deployment, and maintenance of reusable software for science are becoming a growing concern. Many scientists’ research increasingly depends on the quality and availability of software upon which their works are built. To highlight some of these issues and share experiences, the First Workshop on Sustainable Software for Science: Practice and Experiences (WSSSPE1) was held in November 2013 in conjunction with the SC13 Conference. The workshop featured keynote presentations and a large number (54) of solicited extended abstracts that were grouped into three themes and presented via panels. A set of collaborative notes of the presentations and discussion was taken during the workshop. Unique perspectives were captured about issues such as comprehensive documentation, development and deployment practices, software licenses and career paths for developers. Attribution systems that account for evidence of software contribution and impact were also discussed. These include mechanisms such as Digital Object Identifiers, publication of “software papers”, and the use of online systems, for example source code repositories like GitHub. This paper summarizes the issues and shared experiences that were discussed, including cross-cutting issues and use cases. It joins a nascent literature seeking to understand what drives software work in science, and how it is impacted by the reward systems of science. These incentives can determine the extent to which developers are motivated to build software for the long-term, for the use of others, and whether to work collaboratively or separately. It also explores community building, leadership, and dynamics in relation to successful scientific software

    Introduction To Research Methods In The Social Sciences (SOCI 016B) Syllabus

    Get PDF
    Introduction To Research Methods In The Social Sciences course description:An overview of research methods in the social science, with an emphasis on practicing a variety of techniques/methodologies, and thinking about designing good research questions and assessing answers

    Modeling and visualizing networked multi-core embedded software energy consumption

    Full text link
    In this report we present a network-level multi-core energy model and a software development process workflow that allows software developers to estimate the energy consumption of multi-core embedded programs. This work focuses on a high performance, cache-less and timing predictable embedded processor architecture, XS1. Prior modelling work is improved to increase accuracy, then extended to be parametric with respect to voltage and frequency scaling (VFS) and then integrated into a larger scale model of a network of interconnected cores. The modelling is supported by enhancements to an open source instruction set simulator to provide the first network timing aware simulations of the target architecture. Simulation based modelling techniques are combined with methods of results presentation to demonstrate how such work can be integrated into a software developer's workflow, enabling the developer to make informed, energy aware coding decisions. A set of single-, multi-threaded and multi-core benchmarks are used to exercise and evaluate the models and provide use case examples for how results can be presented and interpreted. The models all yield accuracy within an average +/-5 % error margin
    corecore