335 research outputs found

    Improving Skin Lesion Segmentation via Stacked Adversarial Learning

    Get PDF
    Segmentation of skin lesions is an essential step in computer aided diagnosis (CAD) for the automated melanoma diagnosis. Recently, segmentation methods based on fully convolutional networks (FCNs) have achieved great success for general images. This success is primarily related to FCNs leveraging large labelled datasets to learn features that correspond to the shallow appearance and the deep semantics of the images. Such large labelled datasets, however, are usually not available for medical images. So researchers have used specific cost functions and post-processing algorithms to refine the coarse boundaries of the results to improve the FCN performance in skin lesion segmentation. These methods are heavily reliant on tuning many parameters and post-processing techniques. In this paper, we adopt the generative adversarial networks (GANs) given their inherent ability to produce consistent and realistic image features by using deep neural networks and adversarial learning concepts. We build upon the GAN with a novel stacked adversarial learning architecture such that skin lesion features can be learned, iteratively, in a class-specific manner. The outputs from our method are then added to the existing FCN training data, thus increasing the overall feature diversity. We evaluated our method on the ISIC 2017 skin lesion segmentation challenge dataset; we show that it is more accurate and robust when compared to the existing skin state-of-the-art methods

    Cancer diagnosis using deep learning: A bibliographic review

    Get PDF
    In this paper, we first describe the basics of the field of cancer diagnosis, which includes steps of cancer diagnosis followed by the typical classification methods used by doctors, providing a historical idea of cancer classification techniques to the readers. These methods include Asymmetry, Border, Color and Diameter (ABCD) method, seven-point detection method, Menzies method, and pattern analysis. They are used regularly by doctors for cancer diagnosis, although they are not considered very efficient for obtaining better performance. Moreover, considering all types of audience, the basic evaluation criteria are also discussed. The criteria include the receiver operating characteristic curve (ROC curve), Area under the ROC curve (AUC), F1 score, accuracy, specificity, sensitivity, precision, dice-coefficient, average accuracy, and Jaccard index. Previously used methods are considered inefficient, asking for better and smarter methods for cancer diagnosis. Artificial intelligence and cancer diagnosis are gaining attention as a way to define better diagnostic tools. In particular, deep neural networks can be successfully used for intelligent image analysis. The basic framework of how this machine learning works on medical imaging is provided in this study, i.e., pre-processing, image segmentation and post-processing. The second part of this manuscript describes the different deep learning techniques, such as convolutional neural networks (CNNs), generative adversarial models (GANs), deep autoencoders (DANs), restricted Boltzmann’s machine (RBM), stacked autoencoders (SAE), convolutional autoencoders (CAE), recurrent neural networks (RNNs), long short-term memory (LTSM), multi-scale convolutional neural network (M-CNN), multi-instance learning convolutional neural network (MIL-CNN). For each technique, we provide Python codes, to allow interested readers to experiment with the cited algorithms on their own diagnostic problems. The third part of this manuscript compiles the successfully applied deep learning models for different types of cancers. Considering the length of the manuscript, we restrict ourselves to the discussion of breast cancer, lung cancer, brain cancer, and skin cancer. The purpose of this bibliographic review is to provide researchers opting to work in implementing deep learning and artificial neural networks for cancer diagnosis a knowledge from scratch of the state-of-the-art achievements

    List of 121 papers citing one or more skin lesion image datasets

    Get PDF
    corecore